
www.manaraa.com

In compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SOFTWARE CLONES

FOR SOFTWARE RE-ENGINEERING AND MAINTENANCE

by

Irina Padioukova

Diploma Metallurgical Engineering, Moscow State Institute o f Steel and Alloys, 1991

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

M aster o f Computer Science

in the Graduate Academic Unit o f Computer Science

Supervisors: Colin Ware, Ph.D., Computer Science
Andrew McAllister, Ph.D., Computer Science

Examining Board: John DeDourek, MS., Computer Science, Chair
Prabhat Mahanti, Ph.D., Computer Science and Applied Statistics
Mary Kaye, Dept, o f Electrical and Computer Engineering

This Thesis is Accepted

iS a n o f Graduate Studies

THE UNIVERSITY OF NEW BRUNSWICK

February, 2003

©Irina Padioukova, 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A 0N4
Canada

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A 0N4
Canada

Your file Votre reference
ISBN: 0-612-87535-0
Our file Notre reference
ISBN: 0-612-87535-0

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

University of New Brunswick

HARRIET IRVING LIBRARY

This is to authorize the Dean of Graduate Studies

to deposit two copies of my thesis/report in the

University Library on the following conditions:

(DELETE one of the following conditions)

V w The author agrees that the deposited copies of this thesis/report may be made
available to users at the discretion of the University of New Brunswick

OR

(b) The author agrees that the deposited copies of thjs'tfiesis/report may be made
available to users only with her/his written pejrtussion forAe period ending

JUSTIFICATION:

After that date; it is agreed that the thesis/report may be made available to
users at tjjeaiscretion of the University of New Brunswick*

Date & Signature of Ajithor

Signature of Supervisor ^Sjgnature oftbd^ean ot Graduate Studies

* Authors should consult the "Regulations and Guides for the Preparation and Submission of
Graduate Theses and Reports" for information concerning the permissible period of
restricted access and for the procedures to be followed in applying for this restriction. The
maximum period of restricted access of a thesis is four years.

BORROWERS must give proper credit for any use made o f this thesis, and obtain
the consent of the author ifit is proposed to make extensive
quotations, or to reproduce the thesis in whole or in part.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

Code cloning complicates maintenance and hampers evolution o f large software systems

as it degrades their design and structure. Systematic management o f software clones has

the potential to translate into significant budget savings. Although various aspects o f

clone management have been addressed by academic research, practical application has

been hampered by the lack o f adequate tools and processes.

This thesis research defines, implements and tests a comprehensive process for

analyzing software clones in large bodies o f source code. This process provides software

practitioners with a necessary set o f practical tools to detect, analyze, categorize and

remove clones.

A solution to extending a text-based clone identification technique to detect partial

clones is described and integrated with an existing clone detection tool.

A prototype o f an interactive visual clone management tool that analyzes detected

clones, clusters them and presents them to the user is introduced. This tool enables

software practitioners to view, analyze, and utilize clone data to pursue their possible

elimination.

This thesis evaluates the described process by applying it to a commercial software

system and analyzes the results.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A cknowledgments

I would like to express my sincere appreciation to those who helped me during m y work:

• Dr. Colin W are and Dr. Andrew McAllister, my advisors, for their support,

guidance, and helpful feedback.

• Eric Falkjare, m y manager, for his constant encouragement and support.

• Innovatia Inc., m y company, for accommodating m y hardware needs.

• Linda Sales, our graduate secretary, for all her kindness and care.

• My friends, m y family, and especially m y partner, Kevin Murphy, for their

love, inspiration, continuous encouragement, and tolerating m y constant

unavailability.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table o f Contents
A bstract.. ii

A cknow ledgm ents... iii

Table of C ontents...iv

List of T ab les ... vii

Table of Figures... viii

Chapter 1 - Introduction.. 1

1.1 Thesis O bjectives...3

1.2 Thesis O rganization..6

Chapter 2 - Software Clones... 8

2.1 Code C lon ing ..8

2.2 Implications o f Code C loning...12

2.3 Management o f Software C lones...14

2.4 Software Clones R evisited ...17

2.5 Clone Identification...20

2.5.1 Direct Metrics Comparison A pproach ... 21

2.5.2 Abstract Syntax Trees Comparison A pproach... 22

2.5.3 Text Based Comparison A pproach ...24

2.5.4 Choice o f A pproach ... 26

2.5.5 SelArt - a Tool for Identifying Redundancy in Source C ode.............................27

Chapter 3 - Information V isualization...33

3.1 Origins o f Information V isualization..33

3.2 Software V isualization... 36

3.3 Visualization in Maintenance and Re-engineering... 37

3.4 General Design Guidelines for Program Visualization...38

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C h ap te r 4 - N ear C lone Identification w ith S e lA rt..43

4.1 Background.. 43

4.2 Near Clone Detection with SelA rt... 44

4.3 Step 1: Pre-processing Transform ation...46

4.3.1 Scanner Design...53

4.3.1.1 The Token S e t..54

4.3.1.2 State Diagram Construction..54

4.3.1.3 Transition Tables... 57

4.3.1.4 Token Recognition Procedure.. 58

4.3.2 The Parser Engine D esign... 60

4.3.3 Implementation o f the Pre-processing...61

4.3.3.1 The Parser M odule..61

4.3.3.2 Discovery o f Directory Structure.. 62

4.3.3.3 Preservation o f the Line Structure... 63

4.3.3.4 Supporting S tatistics .. 64

4.4 Step 2: Clone identification with SelA rt..65

4.4.1 Line-Oriented to Stream Input Conversion... 65

4.4.2 SelArt Parameters.. 66

4.5 Step 3: Post-processing o f Clone Identification R esults...67

4.5.1 Original Result Presentation.. 67

4.5.2 Filtering Infonnation for Future A nalysis... 68

4.5.3 Conversion o f Clone B oundaries.. 68

4.5.4 Implementation D etails ..69

4.6 Closing R em arks... 71

C h ap te r 5 - Clone V isualization P ro to type: C loneM aster... 73

5.1 M otivation...73

5.2 Related W o rk ' ...75

5.3 Formulating Requirements for the CloneM aster T oo l..82

5.4 CloneMaster Design and Implementation Highlights...91

5.4.1 Usage Scenarios...91

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.4.2 CloneMaster Data Organization...94

5.4.2.1 Database manipulation with D BM anager... 95

5.4.3 Graphical User Interface O rganization..96

5.4.3.1 System Loading..100

5.4.3.2 Menus, Navigation, and Interaction Techniques..102

5.4.3.3 Query Support.. 107

5.4.3.4 Comments on Im plem entation... 108

Chapter 6 - Industrial Experience and E valuation..I l l

6.1 Selecting the Case Study..111

6.2 Choice o f Source Code Test C ase..112

6.3 Evaluation P rocedure... 113

6.4 Clone Detection R esults...117

6.5 Nature o f Clones and Their O ccurrences...123

6.6 Clone Analysis with C loneM aster.. 125

6.7 Conclusions...127

Chapter 7 - Conclusions and Future W ork...131

R eferences... 136

Appendix A - Parser D esign ...141

Appendix B - CloneMaster Data M odel...148

Appendix C - Experimental R esu lts ..151

Appendix D - Support Tools “Help” P a g e ...159

Vita

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List o f Tables
Table 4.1: C++ tokens with associated actions (full set o f participating tokens is listed in

Table A .l Appendix A).. 49

Table 6.1: Comparison o f pre-processing configurations between parsed 1 and parsed2

systems..116

Table 6.2: Summary o f major statistics from the experiments... 117

Table 6.3: Classification o f typical duplication patterns with possible restructuring

solutions..124

Table A .l: Selected T okens... 142

Table A.2 Token definition...145

Table A.3 Selected Character C lasses.. 147

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table o f Figures
Figure 1.1: High Level Diagram o f Clone Analysis Process..4

Figure 2.1: An example o f system partitioning by file clusters..20

Figure 2.2: Parameterized match verification...25

Figure 2.3: A set o f snips o f length 10 characters generated to represent the source code

text (arrows indicate end o f lines)..28

Figure 2.4: Set o f snips o f length 3 lines generated for the fragment o f code o f Figure

2.3 29

Figure 2.5: Combining raw m atches.. 31

Figure 2.6: Combining and splitting raw m atches.. 32

Figure 3.1: Visualization model. Mapping data to visual form..35

Figure 4.1: Data flow o f the clone identification p rocess... 45

Figure 4.2: Diagram illustrating mechanism o f pre-processing... 47

Figure 4.3: Example o f pre-processing transform ation...50

Figure 4.4: Unifying action o f pre-processing...52

Figure 4.5: Transition diagram for ‘identifier’ token (TokenCode = 1)...............................55

Figure 4.6: Transition diagram o f a character constant token (TokenCode =1 1) defined

as one or more characters enclosed in single quotes (Table A.2).................................56

Figure 4.7: A fragment o f state diagram that facilitates recognition o f the following

token types: ‘C-style com m ent’ (TokenCode=7), ‘inline com m ent’ (TokenCode=6),

and ‘division assignment’ (TokenCode=50).. 57

Figure 4.8: Token recognition algorithm .. 59

Figure 4.9: Line tracking algorithm.. 64

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 4.10: An example o f a ‘.pos’ file..69

Figure 5.1: A scatter plot generated by Baker to visualize clone occurrences in a file. ..77

Figure 5.2: View o f the Cluster #1948 Page.. 82

Figure 5.3: Main use case scenarios o f the CloneMaster visualization to o l.......................93

Figure 5.4: DBManager Graphical User Interface..96

Figure 5.5: CloneMaster GUI display (main window)...99

Figure 5.6: Icons used in CloneM aster...99

Figure 5.7: Using color-coding for highlighting..99

Figure 5.8: ‘Load System ’ dialog.. 101

Figure 5.9: Pie diagram showing amount o f cloned code vs. non-cloned code............... 103

Figure 5.10: A histogram showing clone distribution by size built with bucket width o f

20 lines..104

Figure 5.11: Pop-up m enus..104

Figure 5.12: Example o f clone instance inform ation.. 106

Figure 5.13: Example o f a dynamic query based on clone entity.. 108

Figure 5.14: CloneMaster architecture: conceptual view .. 110

Figure 6.1: Experimental process...114

Figure 6.2: Clone clusters break down by size...120

Figure 6.3: Duplication within the same file vs. duplication between different files 121

Figure 6.4: File span distribution o f clone clusters... 121

Figure 6.5: Distribution o f file clusters by size (i.e., file count).. 122

Figure C. 1: Example o f a clone consisting entirely o f preprocessor directives............... 151

Figure C.2: Example o f an exact clone.. 152

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure C.3: An example o f two near clones typical to ‘p a rsd l’...153

Figure C.4: An example o f a near clone.. 154

Figure C.5: Counterpart o f the clone from Figure C .4... 155

Figure C.6: An example o f exact clone reported in ‘original’ and ‘parsed 1’, but missed

in ‘parsed2’.. 156

Figure C.7: Same code fragment (Figure C.6) after pre-processing (tokenized)............. 157

Figure C.8: Example o f restructuring... 157

Figure C.9: Example o f restructuring... 158

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1 - Introduction

Software development is an evolving process resulting in ever larger and more complex

systems. However, most o f the cost o f developing these systems comes not in

developing the initial release, but in changing and adapting them over time.

M aintenance1 o f existing systems has become the most expensive part o f software life

cycle (50-70% o f the total cost [Boehm 1981, p. 533]).

A noteworthy but often overlooked problem that adversely affects maintainability o f

large software systems arises from existence o f repetitive patterns o f duplicated code

(also known as software clones). Previous research o f commercial code revealed

redundancy levels o f up to 10% [Baker 1992] [Baxter 1998][Dagenais 1998] and even

greater [Mayrand 1996] [Baxter 2002].

Duplicated code tends to be introduced into software systems as modifications are made

to add new functionality or to fix bugs. As clones proliferate, they degrade the design

and the structure o f software compromising such important software qualities as

readability and adaptability [Kontogiannis 1996][Dagenais 1998][Baxter 1998][Monden

2002]. Conversely, identification o f clones may significantly reduce maintenance effort

1 Software Maintenance is the “modification o f a software product after delivering to correct faults, to
improve performance or other attributes, or to adapt the product to a changed environment” [ANSI 1983]

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and improve overall quality: Once clones are identified and analyzed, the code can be

often restructured2 and considered for proper reuse [Fowler 1999] [Baxter 2002].

Clone detection technology and the use o f clones for software comprehension and

restructuring are the two cornerstones o f clone management, an emerging area o f

software engineering that strives to improve quality and maintainability o f existing

software. Since meaningful clones may not always be exact copies o f each other, the

clone detection technology is expected to provide feasible but accurate solutions to

partial matches. Previous research has proposed several approaches to identifying partial

matches [Baker 1992][Mayrand 1996] [Baxter 1998]. However to date, none o f the

existing techniques adequately fulfill the need for partial matching.

Raw clone data, usually delivered in a textual report form, can be confusing,

overwhelming and difficult to work with. One feasible approach to explore in order to

enhance its usability is that o f visualization [Baker 1992] [Johnson 1994a]. Software

visualization (SV) is a type o f information visualization that combines aspects o f

computer graphics, data mining, human-computer interaction, and animation to facilitate

users’ understanding o f the software system. SV strives to support the decision-making

process by presenting users with the ‘right’ information and helping them to make the

most sense o f this information. Applied in software development environments, SV has

been shown to deliver many benefits [Ball 1996] [Linos 1994],

2 Restructuring is the modification o f software that improves its internal structure, while preserving
external behaviour (functionality, semantics). Recognized benefits o f improved structure are in facilitation

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In fact, presenting users with thoroughly organized multi level visual display showing

different occurrences o f duplicated code, complemented with a convenient means o f

navigation between these occurrences, could have several advantages. From a re

engineering3 perspective, this functionality may facilitate understanding o f the possible

nature o f these occurrences, and, consequently, open opportunities for restructuring code

and devising improved architectures. From the maintenance perspective, this

functionality will help to ensure consistent maintenance: in many cases, it may be

appropriate to propagate any changes made to a particular instance o f a clone (i.e., fixing

a bug) through the entire set.

1.1 Thesis Objectives

To date, the main focus o f redundancy analysis research has been on the algorithmic

aspects o f clone identification or on clone-based restructuring, whereas little work has

been done on the practical application o f these techniques in the context o f software

maintenance and re-engineering. Recognizing this deficiency, this thesis attempts to

define and implement a comprehensive process o f analyzing o f software clones in large

bodies o f source code by integrating the three main stages o f redundancy analysis: clone

identification, clone data presentation, and clone data interpretation (Figure 1.1).

o f subsequent extension and long-term maintenance [Chikofsky 1990].
3 Software Re-engineering is the “examination o f a subject system to reconstitute it in a new form and the
subsequent implementation o f the new form” [Chikofsky 1990].

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Source code

— Source code

^ Clone
Identification

v. process clone localization data

clone
data

Clone data
interpretation

process
(decision making)

Other input'

possible modifications

Software
System

Clone data
presentation

(visualization)
process

Figure 1.1 : High Level Diagram o f Clone Analysis Process

The objectives o f the research can be summarized as follows:

• Explore the concept o f partial matches, - ‘near’ clones.

• Investigate possible approaches to identification o f meaningful near clones in the

bodies o f large software systems. In this area, work will be centered on SelArt

[Johnson 1993] [Johnson 1994a] [Johnson 1994b], an existing tool for locating exact

duplications o f text, in order to extend its capabilities to handling o f near clones.

• Analyze the nature o f clones and their occurrence in an industrial size software

system.

• From the practical perspective (software understanding and maintenance), evaluate

the potential benefit o f extending the clone identification process to accommodate

near clones.

• Design and implement a prototype clone management tool, CloneMaster. Based on a

graphical interface, CloneMaster is intended to provide software developers,

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

software engineers, maintenance engineers, and other professionals involved with

software systems at different stages o f their lifecycle with powerful yet intuitive

means to extract, view and manage information on software clones and their

distribution within the system.

The following objectives apply to the CloneMaster system:

■ Propose an approach to clone visualization to adequately address the needs

o f software re-engineering and especially maintenance;

■ Develop adequate visual means o f presenting clone related data;

■ Investigate ways o f producing effective displays by supplementing

information conveyed via visual abstractions with different types o f non

visual information (statistical info, source code view, etc.);

■ Allow user interaction. Focus on achieving effective and smooth navigation

within clone information spaces.

CloneMaster is designed to be a single- task-oriented tool to serve in specific field o f

identification o f software duplications for the purposes o f their understanding and

possible elimination. The functionality o f the tool and its user interface is designed so

that clone information (programming-in-the-large) does not get scattered or even lost in

large amounts o f local, trivial, or irrelevant information (programming-in-the-small).

Since maintenance is such a cost and resource demanding part o f software life cycle, it

makes good economic sense to attempt to automate at least some o f its aspects (clone

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

identification, in this particular case) while providing maximum computer-aided support

for its other aspects (visual tool for clone analysis).

1.2 Thesis Organization

This remaining part o f the thesis is structured as follows:

Chapter 2 is about software redundancy. It introduces the problem o f code cloning,

explores its origins and potential impact on the quality o f software systems as well as

suggests some possible benefits o f systematic clone management. The chapter formally

defines the term ‘software clone’ and other related terms to be used throughout the

thesis. This chapter analyzes some prominent approaches to clone identification and

rationalizes the choice o f a particular clone identification technique for the purposes o f

this thesis research.

Chapter 3 covers Visualization topics. It begins with a general discussion o f Information

Visualization and its role in human cognition. It introduces Software Visualization as a

sub field o f Information Visualization and presents cases o f successful application o f

visualization concepts and techniques in software engineering and maintenance. The

chapter concludes with a discussion o f some generalized design guidelines for program

visualization.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 develops ideas in the domain o f near clone accommodation using SelArt. It

describes a three-step integrated process o f exact and ‘near’ clone identification and

elaborates on design and implementation issues o f each o f the three steps. However, the

main focus o f the chapter is on a pre-processing step intended as a solution for SelA rt’s

deficiency to detect ‘near’ clones in addition to exact clones.

Chapter 5 covers the design and implementation o f the CloneMaster visualization tool. It

gives a brief overview o f the current state o f the clone visualization field followed by the

discussion o f requirements that have been identified for the tool to satisfy. The bulk o f

this chapter focuses on design and implementation aspects o f CloneMaster.

To verify hypotheses developed throughout earlier chapters, Chapter 6 presents the

results o f applying the proposed integrated process o f clone analysis to a commercial

software system. The following topics make up the discussion: assessment o f the pre

processing and its role, clones found and possible solutions to their elimination,

applicability o f the approach, effectiveness o f the visual tool.

Finally, Chapter 7 presents some conclusions and suggests directions for future work.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2 — Software Clones

This chapter is about software redundancy. It dissects the problem o f code cloning,

explains its origins, its potential impact on the quality o f software systems, and argues

towards potential benefits o f systematic clone management. The chapter defines the tenn

‘software clone’, differentiating between such distinct kinds o f clones as ‘exact’ clones

and ‘near’ clones. It examines several distinct approaches to clone identification to

justify adaptation o f the text-based comparison approach for the purpose o f the current

dissertation. The chapter concludes with a brief discussion o f SelArt.

2.1 Code Cloning

The problem o f redundant code is often underestimated. On average, a modem

industrial-sized legacy system contains 5-10% o f repetitive code [Lague 1997],

However, individual subsystems can exhibit even higher redundancy (up to 30%)

[Baxter 1998]. Software clones may occur for a number o f reasons [Kontogiannis

1996] [Johnson 1994b] [Baker 1992][Dagenais 1998]:

■ Code reuse by copying existing code fragments

A widely practiced approach to introducing new functionality is through ad hoc

reuse o f existing code. Programmers simply find some code fragment performing a

similar computation to the one desired, copy it, and then do any necessary

alterations in place. It is easy to see why this approach is popular: making a copy

and modifying it is much easier than trying to exploit commonality by virtue o f

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

generalized procedures. Another argument in favor o f copy-and-modify reuse is

that it is safer than more major revisions involving structural changes to working

sections o f the code, especially if the programmer making changes is not the one

who wrote the code originally. The ‘copy-and-paste’ feature, universally supported

by screen text editors, also contributes to the popularity o f this type o f reuse.

Furthermore, there exist cases when the above method becomes adopted as a

standard way o f producing variant modules. For example, in device drivers: only

the code responsible for interaction with the hardware changes, whereas parts o f

the driver talking to the operating system remain the same and, therefore, can be

copied entirely. Another example comprises applications spanning multiple

operating systems, such as web browsers, multimedia applications, etc. In these

cases, the ‘copy-and-paste’ technique can have an advantage o f reducing the

amount o f testing needed for it reuses previously tested modules.

■ Coding styles

Maintaining a certain coding style may cause a regularly needed code fragment

(such as error reporting routines, user interface displays, etc.) to be scattered

around the system. In fact, Baker [Baker 1992] reported that a substantial part o f

the clones found in the source for the X W indow System and a large AT&T

software system was related to error checking and handling.

■ Coding schemas and cliches

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Some computations, due to their intrinsic simplicity and universality, are

encountered so frequently that they almost become definitional (e.g., linked list

insertion, array sorting, etc.), and programmers develop mental macros for coding

them. Even when ‘copy-and-paste’ is not used, these mental macros may produce

clones differing only in irrelevant details (i.e. variable names, ordering o f

statements).

■ Failure to properly identify/use abstract data types

Some clones are in fact complete duplicates o f functions intended for use on

another data structure o f the same type (insertion sort on an array, for instance). In

this case, the data type operation should have been supported by reusing a library

function rather that pasting a copy.

■ Unavoidable cloning

Sometimes cloning cannot be avoided because the other subsystem(s) may not be

modified for a variety o f reasons. They may belong to a different department, be

part o f a different product, stored in non-volatile memory in embedded systems, be

frozen after lengthy testing, be already released, etc.

* Name clashes

Often, a module has to be replicated with names changed due to name clashes at

link time.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Efficiency considerations

To avoid the overhead o f generalized routines in time critical applications, the

code for frequently performed computations is replicated every time the

computation is invoked.

■ Time constraints

Scheduling pressures contribute to code redundancy by allotting no time for code

generalization.

* M aintaining multiple versions

Keeping the code for multiple versions in separate files may be preferable to

working with a lot o f # ifd e f s.

■ Developer qualifications

Poor understanding o f abstraction, inheritance, composition, etc. among

developers limits their reuse approach.

■ Lack o f support for formal reuse process

Reusable components are not documented or made readily available to the

developers.

■ Programmer productivity

1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Evaluating the performance o f a programmer by the amount o f code produced

gives a natural incentive for copying code.

Cloning activity can happen for code fragments o f a few lines or for modules o f

thousands o f lines. It can happen in procedural code as well as in object-oriented code. It

can happen in documentation. Although code duplication can have its justifications, it is

considered bad practice. Some o f the negative consequences o f software cloning are

addressed in the next section.

2.2 Implications o f Code Cloning

As clones accumulate in the system, one can expect a decline in code quality and growth

in its sheer size, requiring more personnel, more effort and more resources to maintain

its working condition and to respond to market pressures. Some specific problems

caused by clone proliferation are considered below [Lague 1997][Kontogiannis

1996] [[Johnson 1994b]:

■ When a bug has been found in one copy, a bug fix may be made to the place where

the bug was found, but not to the corresponding parts o f other copies simply because

the programmer is not always aware that these other copies exist. Consequently, the

same bug reoccurs throughout software despite many local fixes. Moreover, multiple

unique fixes for the same bug are produced.

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Since the internals o f the module are not completely understood (because o f time

pressure, etc.), unnecessary artifacts o f the previous usage can be preserved in the

current code (“dead code”).

■ As the structure o f a software system degrades, there becomes much more code to

analyze and maintain. M ultiple modules exhibiting the same functionality may be

confusing because the reason for their existence is not clear.

■ Testing costs increase since there are more modules to test.

■ Code duplication increases the size o f the code, extending compile time and

expanding the size o f executables. Code reviews are needlessly extended.

■ Code duplication masks potential design problems like missing inheritance or

missing procedural abstraction. W ithout being addressed, such design flaws could

hamper the addition o f new functionality.

■ Proliferating o f clones may eventually lead to the loss o f design rationale: nobody

can explain how a system could be designed this way; so, “instead o f logically

comprehending the system, it is treated as a living, organic mess that grows in cost

and size o f its own accord” [McCabe 1990].

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A study described in [Monden 2002] used metrics to quantitatively clarify the relation

between code clones and module maintainability and reliability. The study found clone-

containing modules to be considerably less maintainable and less reliable than clone-free

modules.

Clearly, if not properly addressed, software redundancy may create a lot o f problems for

both software providers and their clients. The next section discusses some aspects o f

software clone management.

2.3 Management o f Software Clones

Often viewed as overhead, systematic management o f software clones may translate into

significant budget savings [McCabe 1990] [Lague 1997]. Detection and removal o f

clones promises an immediate decrease in software maintenance costs o f possibly 5-10%

magnitude [Baxter 1998]. However, even larger savings could follow from improved

architectures (i.e., readability, changeability) and proper reuse [Fowler 1999].

Several academic researchers and practitioners have contributed to clone management in

the past years. Some focused on clone detection techniques, some explored software

restructuring actions based on clone detection, others worked on developing preventive

measures to avoid cloning altogether.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Baxter et al. suggested that applying clone detection as a part o f “never-ending mining

and refactoring operation could reveal missing abstractions and significantly mitigate the

risk o f cut-and-paste programming” [Baxter 2002], They argued in favor o f automated

clone detection followed by automatic clone elimination by replacing clones with better

structured code (i.e., include files, copylibs, typedefs, macros, inlined procedures, etc.)

[Baxter 1998].

[Kane 1997] proposed systematic merging o f clones into a common baseline, at least

once every release, as a mechanism to exercise control over clone proliferation.

Dagenais et al. [Dagenais 1998] suggested that in cases when removing clones via

replacing them with reusable components is not feasible, links between the clones could

be added to ensure consistent maintenance.

Based on the premise that duplication in software implies latent abstractions, [Fanta

1999] [Balazinska 1999] [Kataoka 2001] explored opportunities for clone based

refactoring o f object-oriented systems.

Kontogiannis et al. [Kontogiannis 1996] showed that clone detection could positively

contribute to systematic reuse. They identified often-cloned functionality as prime

candidates for generalization and repackaging for repositories o f reusable components to

facilitate future development.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

McCabe [McCabe 1990] emphasized that design structure surrounding redundant code

could be also redundant. Therefore, studying clone occurrences could help to pinpoint

design flaws and suggest improved architectures.

Mayrand et al. [Mayrand 1996], researching clones at the function level, developed a

scale comprising 10 levels for evaluating the “goodness” o f clones, with more

acceptable clones residing at higher levels. Based on this scale, they devised a set o f

clone removal strategies. For instance, level 1 clones, or exact duplicates, can be

removed at low risk by creating common libraries o f functions, whereas higher level

clones could be tackled by means o f parameterization (function parameters,

preprocessing macros, function templates, etc.).

To reduce maintenance costs and to minimize risk o f failures, Lague et al. [Lague 1997]

developed two techniques, Preventive Control and Data Mining, to control clone

proliferation. Preventive Control ensures against introducing unnecessary new clones

into the system. Data Mining, on the other hand, focuses on consistent management o f

existing clones.

Clone management strives to increase both quality and maintainability o f software

systems. It emphasizes the importance o f a systematic approach to redundancy analysis

and places increasing demands on the clone detection technology that is expected to

provide efficient, feasible but accurate solutions to the problem o f clone identification.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Literature research indicated a lack o f adequate clone identification techniques to

support successful clone management. Consequently, clone detection has been identified

as one o f the main areas o f interest within the scope o f this thesis work.

Section 2.5 o f this chapter examines some prominent clone identification techniques

currently used by the industry and presents argumentation in favor o f choosing a text-

based clone identification tool to fulfill the requirements o f this thesis. The purpose o f

the next section is to further clarify the meaning o f the term ‘software clone’ and to

define some additional terminology to be used in future discussions.

2.4 Software Clones Revisited

In the context o f this thesis, the term ‘software clone’ is used to refer to a program

fragment that is identical to another fragment or is a variation o f it. The former

corresponds to ‘exact’ clones; the latter defines ‘near’ clones. In other words, a software

clone is a copy o f existing piece o f code that underwent (possibly empty) modification.

Exact clones, products o f ‘cut-and-paste’ activity with no further customization, are

straightforward. Near clones are much more subtle. There exist two potential sources o f

them: cut-and-pasting and mental schemas4. In the case o f ‘cut-and-paste’, a code

fragment is copied and then edited. However, empirical observations show that changes

4 Baxter refers to them as mental macros [Baxter 1998]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

introduced into the copy are usually cosmetic and do not alter its structure. Typical

changes include:

■ M odifications o f identifier names, constants and numbers.

■ Addition or removal o f comments.

■ Reorganization o f source code page layout (formatting and whitespace).

■ Interchanging o f commutative operands in arithmetic expressions (unlikely).

■ Addition or deletion o f statements (unlikely).

■ Rearrangement o f the sequence o f statements (unlikely).

■ Adding an additional block structures such as ‘IF .. .TH EN .. .ENDIF’ (unlikely)

Consequently, a near clone is not identical to its original counterpart; nevertheless, the

two exhibit a high level o f syntactic similarity. Near clones o f mental schema origin, on

the other hand, produce a considerably harder case. Not based on copying, they normally

have lower degree o f syntactic correlation and thus are harder to identify. To the best

knowledge o f the author, none o f the currently available methods o f clone identification

is capable o f handling them adequately.

Every clone instance can be characterized by the attributes o f contents, file, boundaries,

length, and cardinality. The contents attribute refers to the actual source code comprising

the clone; the file attribute is the file the clone instance resides in; boundaries reflect

clone’s positioning within the file (beginning/ending offset); the length attribute

corresponds to the physical size, measured in number o f lines/characters, o f the clone

instances. In case o f exact clones, all instances o f the same clone will share the same

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

contents and the same length. In case o f near clones, however, the contents and the

length attributes might vary from instance to instance. Cardinality o f a clone is defined

as the number o f instances o f that clone.

At this point, it is customary to introduce two more terms to be used in further

discussion: ‘clone cluster’, and ‘file cluster’. A clone cluster is a set o f all instances o f

the same clone and has two main attributes: ‘size’ and ‘file span’. A size o f a clone

cluster refers to the number o f clone instances comprising it, whereas a file span o f a

clone cluster is taken to be a set o f all files sharing that clone.

If a clone cluster is a set o f matches, a file cluster is a maximal set o f files that have

matches in common. The only attribute o f a file cluster is its ‘size’. A size o f a file

cluster is equal to the number o f comprising files. File clusters consisting o f a single file

are often referred to as ‘singletons’. File clusters that span two files are called ‘pairs’.

File clusters involving more than two files are called ‘com plex’. For example, file FA

contains clone C l, file FB contains clones C l and C2, file FC contains clone C2, and file

FD contains two instances o f clone C3. This example contains 2 file clusters: FC1 =

{FA, FB, FC} with size = 3 and FC2 = {FD} with size - 1. FC2 is a singleton, while

FC1 is a complex cluster. File cluster identification is an important part o f redundancy

analysis for it reveals an additional layer o f dependencies not usually captured by

conventional analysis (i.e., control flow graph, data flow graph, structure chart, etc.). In

other words, i f a system file structure were represented as a graph, file clusters would

correspond to connected components o f this graph (Figure 2.1), and thus effectively

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

partition the system into independent regions. It is apparent that different types o f file

clusters reflect different influence o f clones on software quality. For instance, pairs and

complex clusters implicitly indicate inter-module coupling, whereas singletons do not.

FB

FCFA

FC1={FA, FB, FC}
FC2={FD)

FD

Figure 2 .1 : An example o f system partitioning by file clusters.

Lastly, there are occasional code fragments that are ju st accidentally identical, but are

not at all clones (not intended to carry out the same computation). However, Baxter et al.

concluded, “as size [of clones sought] goes up, the number o f accidents o f this type

drops o ff dramatically” [Baxter 1998].

2.5 Clone Identification

Strictly speaking, determining whether two arbitrary pieces o f code are clones o f each

other (i.e. compute identical result) is known to be undecidable in the general case (a

variation o f the halting problem) [Kontogiannis 1996], However in practice, since most

o f the clones are results o f the ‘copy-and-paste’ editing process, detecting complete

semantic equivalents is not necessary. Even if modifications take place, the structure o f

the fragment is rarely changed. Therefore, clone detection can quite legitimately be

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

based on the observation that clone instances intrinsically exhibit a high degree o f

syntactic similarity [Baxter 1998].

A number o f methods and techniques for identifying replicated code have been

described in the literature, varying widely in underlying approach, accuracy, and

performance. Techniques based on statistical comparisons o f style characteristics (use o f

operators, use o f special symbols, the order in which procedures are referenced, etc.)

[Jankowitz 1988], techniques based on comparing arrays o f specific software metrics

[McCabe 1990] [Kontogiannis 1996] [Mayrand 1996] [Dagenais 1998], techniques

exploiting compiler technologies [Baxter 1998], techniques based on matching o f the

character strings composing the code [Baker 1992], [Johnson 1993], and even

techniques based on neural networks [Barson 1995], just to name a few. O f these

approaches, the most relevant to the current work are analyzed below.

2.5.1 Direct Metrics Comparison Approach

In the metrics approach, the system is broken down into components, and then a set o f

selected metrics5 is computed for each component and used (via numerical comparison)

to estimate distance between them. Components that are close together are assumed to

be clones.

5 These metrics relate to aspects o f sequences o f instructions such as their layout, the expressions inside
them, their control flow, the variables used, the variables defined, etc.

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One o f the most important characteristics o f a clone detection technique is its

granularity, i.e. the minimum module considered for analysis. The metrics approach

usually works at the function level [McCabe 1990] [Mayrand 1996] [Dagenais 1998].

Detection o f near clones is possible due to insensitivity o f metrics to fine detail that

doesn’t alter control and data flow o f the code structure, however, at the expense o f

accuracy: false matches are too frequent (39% [Kontogiannis 1996]). It has been shown

[Kontogiannis 1996] that the accuracy o f exact matching can be considerably improved

by expanding the set o f metrics used and by using additional verification techniques.

Unfortunately, the solution is not applicable to cases when ‘near’ clones are being

targeted.

Direct metrics comparison is a feasible approach to clone identification because o f its

affordability, ability to discover near clones, and the ability to measure the degree o f

similarity o f these matches. However, such weaknesses as coarse granularity and high

level o f false positives, especially for smaller procedures, severely limit its usefulness.

2.5.2 Abstract Syntax Trees Comparison Approach

This approach is based upon such conventional compiler technology as abstract syntax

trees (AST) and operates in following steps:

1. The code is parsed to produce an AST

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. Sub-tree clones are found via comparison o f sub-trees for similarity (similarity

threshold)

The AST approach lends itself well to identifying clones differing only in lexemes

(identifier names, numbers, string literals, etc) and/or formatting since it is not sensitive

to irrelevant changes on the lexical level (i.e. comments, spacing, layout) and

performing comparisons for similarity, rather than for equality. Detection in terms o f

program structure allows clones to be automatically factored out and replaced with

equivalent preprocessor macros, type declarations, subroutine calls, or inlined subroutine

calls. Other strengths o f the approach are its capability to find clones in arbitrary code

fragments (as opposed to the metrics approach that operates on complete function

bodies) and to provide measures o f similarity between clones. Although the AST

approach has been stated to accommodate a wide spectrum o f near clones including

those with commutative operators and re-ordered statements [Baxter 1998], evaluation

o f a particular AST-based implementation, CloneDR®6, performed in the course o f this

thesis yielded only limited support in favor o f this claim.

One obvious disadvantage o f comparing ASTs is the computational cost. However,

some implementations claim to show adequate performance and even outperform some

metrics comparison implementations [Baxter 1998]. Another constricting requirement o f

the AST approach is its dependability upon syntactic correctness o f the source.

6 CloneDR® is a commercial AST-based clone identification tool created by Semantic Designs Inc.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2,5.3 Text Based Comparison Approach

A text-based comparison approach is a generalization o f string pattern matching. The

source code text can be represented as a set o f strings7; thus the problem o f finding

duplicated sections o f code becomes a problem o f finding duplication in strings, the

ultimate goal o f which is to identify all maximal matching sub-strings over a certain

threshold. String matching algorithms treat source code strictly as text (program syntax

or/and semantics are not considered).

The appeal o f the textual approach is due to the following reasons:

■ From the implementation point o f view, it takes advantage o f data structures and

efficient algorithms developed for string pattern matching.

■ The source code doesn’t have to be syntactically correct. In the case o f C/C++, it

also avoids common problems with preprocessor directives, as their syntax does

not always conform to the grammar.

■ Text-based approach is language independent.

The major shortcoming o f text-based comparisons is their extreme sensitivity to nuances

on the lexical level. Near clones differing in spacing, comments, identifier names,

numbers or string literals will be totally missed.

7 A string over a certain alphabet is a sequence o f symbols, each o f which belongs to that alphabet.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One popular approach to alleviate the above limitation is to use parameterized strings

instead o f regular strings [Baker 1992], After obtaining parameterized strings from

regular strings via substitution o f all appropriate token names (i.e. variables, constants,

macros, structure members) with a ‘p ’ (i.e. x = 3*y will translate into p = p*p), these

parameterized strings are submitted to one o f the exact matching algorithms. This

adjustment achieves identification o f parameterized (i.e. partial) matches, where the

code sections match except for a one-to-one correspondence between parameterized

tokens. Finally, a simple verification procedure is applied to ensure that sections o f code

encompassed by the match are either identical (exact match) or related by the systematic

renaming (Figure 2.2).

x = y - z; x = b - c;
if (y > z) if (b > c)

m = 1; n = 1;
h = f(x); h = f(x);
y = x; c = x;

Figure 2.2: Parameterized match verification. Consider two code fragments shown in the boxes above.
Matching on p-strings reported them as exact matches. The four first lines require pairings y = b, z = c,
and m = n. However, the fifth line requires a pairing y = c, which conflicts with the previous pairings.
Consequently, only first four lines should be reported as a partial match.

Traditionally, text-based matching relies on line-based comparison on the premise that

the line structure o f the original is preserved in the clone. Alternatively, Johnson

[Johnson 1993] succeeded in the identification o f exact matches in a stream input (no

line boundaries, one long line). Johnson also successfully attempted near clone

identification: Ignoring all whitespace other than line separators revealed some new

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

matches overlooked by exact matching [Johnson 1994b]. Johnson’s research revealed

the suitability o f the approach for near clone detection for it allows (via special

arrangements) making most formatting changes (except for statement order and

commutative operands) virtually irrelevant. Johnson’s technique is discussed in more

detail in section 2.5.5.

2.5.4 Choice o f Approach

For the purpose o f this thesis work, the text-based approach is used. The rationale

behind this choice is explained below:

■ All considered clone identification approaches offer comparable results in terms

o f exact matching while providing limited support for approximate matching.

■ A text-based tool for identifying exact clones, SelArt [Johnson 1993] [Johnson

1994a] [Johnson 1994b], was readily available to us8.

■ The text-based approach is simple; it produces accurate results when exact

matches are sought, shows adequate performance, and scales well.

■ The text-based approach is language independent: language extensions,

syntactically incorrect constructs or incomplete code fragments can be easily

accommodated. In case o f languages that support preprocessor directives, clone

detection can be performed without having to expand these directives.

8 Use o f SelArt (in executable form) for the purpose o f this research was authorized by its creator, Dr.
Howard Johnson o f NRC Canada.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

* The fact that in its raw form the text-based comparison technique is totally

intolerant towards near clones provides scope to explore different enhancements

to this clone detection technique in order to allow for near clones. It is important

to emphasize that the main focus o f this work is assessing potential benefits

achieved by these changes, rather than assessing the clone detection technique

itself.

■ The results report produced by SelArt is both human-readable and lends itself

well to automated processing.

The extension o f SelArt’s functionality to handling approximate matches is covered in

Chapter 4. The next section gives a brief overview o f SelArt.

2.5.5 SelArt - a Tool for Identifying Redundancy in Source Code

SelArt is a research prototype o f a tool for locating exact repetitions o f text in large

bodies o f text using “fingerprints” [Johnson 1993] [Johnson 1994a] [Johnson 1994b].

A fingerprint is a short string that can be used to represent a larger data object for

comparison or other purposes to improve algorithm s’ time and space efficiency.

In general, a fingerprinting function f(x) maps data objects from some data-object

domain D into a set o f fingerprints F such that f { x) & f (y) implies x * y with

extremely high probability, and f(x)=f(y) implies x=y with extremely high probability

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[Johnson 1993]. Thus, an equality test between two data objects can be performed by

comparing their corresponding fingerprints.

Another useful notion in the context o f the current discussion is that o f a snip. A snip is

“a sequence o f characters in a source file. It is identified by file name, beginning offset,

ending offset, and has as content the substring so identified” [Johnson 1993]. Thus any

source code can be represented as a set o f snips. Two snips match if their contents agree

and, consequently, their fingerprints are identical.

To obtain fingerprints, SelArt uses the Karp-Rabin algorithm [Karp 1987]. Each

sequence o f n characters is considered to be a numeral in some base r with the value

computed by multiplying the integers stored in individual bytes by the appropriate

powers o f r and sums them up. A fingerprint o f the sequence (snip) is the remainder o f

the division o f the above sum by some large prime number p. Thus a fingerprint is an

integer value ranging from 0 to p-1.

■ ' 1 ,

aj b[- j a | cj~3 a | b| c [d | ^ | a[x | y | z | -] a jb [c [d | -^|al b [

Figure 2.3: A set o f snips o f length 10 characters generated to represent the source code text (arrows
indicate end o f lines).

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For instance, a fingerprint o f the following snip o f n characters cici+{...cJ...ci+n_, starting

at the position i will be the following integer value f t :

f . = (c . + Cm * r "~2 +... + Cj * r (/+'" !)+... + c,.+„_l)m o d ^ .

Figure 2.4 illustrates a set o f snips generated in cases o f very long lines or no

recognizable lines (stream). However, i f source code is organized in relatively short

lines, seeking matches in terms o f number o f lines is possible (Figure 2.4).

a b a c a b c d a X Y z a b c d a b

Figure 2.4: Set o f snips o f length 3 lines generated for the fragment o f code o f Figure 2.3.

In order to give the user necessary control over the matching process, SelArt uses the

following four parameters:

■ / - desired number o f lines in a snip

* M - maximum allowed number o f characters in a snip

■ m - minimum allowed number o f characters in a snip

■ c - cull parameter ranging from 1 to M\ As c increases, amount o f culling decreases;

c = M disables culling.

These parameters determine the set o f snips to be fingerprinted. A snip is an entity

whose size is determined by the triplet o f values (/, M, m) and that is produced

independent o f the context. Setting M - m yields character strategy; setting m to zero

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and M to very large number results in pure line count case. Culling causes certain

degradation in precision o f clone identification. At worst, all matches longer than 2*M -

c are guaranteed to be found.

After all individual matching snips have been identified, bigger matches are constructed

out o f them. The combine-and-split strategy o f SelArt is best illustrated by example:

Example 1:

There exist two matching snips with content x that are each followed immediately

(touching or overlapping) by matching snips with content y, given that there are no

other snips with either x o ry content which have been encountered in the system

(Figure 2.5a). Combining each pair o f overlapping (touching) snips will yield two

larger snips instead o f four (Figure 2.5b). No information about location o f matches is

lost.

Example 2:

Consider the situation depicted in Figure 2.6a with a third snip o f content x occurring

elsewhere in the source, not followed by a snip with content y. SelArt will keep th ex

snips but shorten th e y snips, such that x andy do not overlap (Figure 2.6b).

Consequently, a three-way x_length match and a two-way match sized (y_length -

overlap) will be constructed. In this case, information about a two-way match o f size

(x length + y_length -overlap) will be lost.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

By combining and splitting matches, a partition o f the files into disjoint snips is

constructed in such a way that all the information about matches obtained in earlier

stages is represented as matches on these disjoint snips. This information is organized as

a set o f records in a flat ASCII file. All record fields and field separators are clearly

defined thus making the file suitable for automated processing.

The SelArt tool has shown adequate performance when applied to software systems o f

substantial size (up to 500 MB) [Johnson 1994a].

a) Raw Matches b) Combined Matches

- x snip

- y snip

- resulting snip

Figure 2.5: Combining raw matches

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

a) Raw Matches b) Combined and Split Matches

x snip

y y snip

- resulting snips

Figure 2.6: Combining and splitting raw matches

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3 - Information Visualization

The focus o f this chapter is on information visualization. It provides a brief introduction

into the topic with special emphasis on software visualization. The chapter concludes

with a discussion o f some design principles to facilitate creation o f efficient program

visualization systems.

3.1 Origins o f Information Visualization

The progress o f human civilization has proven that visual artifacts aid thought. From

writing to mathematics, to maps, to printing, to diagrams, to visual computing, - visual

artifacts have profound effects on peoples’ abilities to assimilate information, to

understand it, to create new knowledge. Information visualization is just about that -

“exploiting the dynamic, interactive, inexpensive medium o f computer graphics to

devise new external aids that enhance cognitive abilities” [Card 1999]. According to

W are [Ware 1999], integration with computer technologies has allowed visualization to

become “an external artifact supporting decision making”.

Card et al. argued that visualization can enhance “cognitive effort by several separate

mechanisms” and described six major ways in which information visualization supports

cognition [Card 1999]:

1) Increasing the memory and processing resources available to the user: high-

bandwidth hierarchical interaction, parallel perceptual processing, offloading

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

work from cognitive to perceptual system, expanded working memory, expanded

storage o f information.

2) Reducing the search for information: grouping information used together, high

data density, locality o f processing, hierarchical search.

3) Using visual representation to enhance the detection o f patterns: recognition

instead o f recall, simplification and organization o f information through

abstraction and omission, organization to reveal patterns.

4) Enabling perceptual inference operations: visual representations make some

problems obvious, facilitates hypothesis formation.

5) Using perceptual attention mechanisms for monitoring: organizing visual

displays such that events o f interest stand out by appearance or motion.

6) Enabling dynamic exploration and navigation o f information space by encoding

information in a manipulable medium.

The ultimate goal o f information visualization is to change the way we present,

manipulate and understand large complex data sets by transforming the information and

knowledge into visual form, leveraging people’s natural abilities o f rapid visual

perception and pattern recognition.

In contrast to scientific visualization, which focuses on physical data, information

visualization focuses on nonphysical information, which is often abstract and doesn’t

automatically map to the physical world and, therefore, lacks natural and obvious

physical representation (i.e., financial data, business information, collections o f

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

documents, abstract concepts). Software, for example “ is intangible, having no physical

shape or size. After it is written, code disappears into files kept on disks” [Ball 1996].

Consequently, creating effective mappings o f nonspatial information into visual form

(i.e., symbols) is one o f the major tasks and challenges o f information visualization. As

emphasized by W are [Ware 1999], establishing and following consistent graphical

conventions with regards to symbol interpretation is equally important for it reduces “the

labor o f learning new meanings”.

The diagram in Figure 3.1 presents a simplified model o f information visualization that

is based upon adjustable mappings from data to visual form to the human perceiver

(adapted from [Card 1999]). Arrows from data to the human indicate a series o f data

transformations. Arrows from the human into the transformations indicate the potential

for user input.

D ata V isual Form

Data Tables:
relations +
metadata

Raw Data Visual
Structures Views

D ata
T ra n sfo rm a tio n s

V isual
M appings

View
T ra n sfo rm a tio n s task^i;

H um an In te rac tio n

Figure 3.1 : Visualization model. Mapping data to visual form.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The purpose o f visualization “is insight, not pictures” [Hamming 1973]. Information

visualization is only useful to the extent that it amplifies our cognitive abilities.

Therefore, emphasis o f any information visualization, and this thesis work especially,

should be on the use o f the picture to give rapid insight into the data, rather than on the

quality o f the graphics.

3.2 Software Visualization

Software Visualization is an emerging field in the fast developing discipline o f

Information Visualization. Baecker at el. referred to SV as “a branch o f software

engineering that strives to aid programmers in managing the complexity o f modem

software” [Baecker 1998].

There have been numerous definitions o f SV proposed since it started to emerge in the

early eighties. In their milestone paper “A Principled Taxonomy o f Software

Visualization” [Price 1993], Price et al. defined software visualization as “the use o f the

crafts o f typography, graphic design, animation, and cinematography with modem

human-computer interaction technology to facilitate both the human understanding and

effective use o f computer software.” Others proposed similar definitions o f software

visualization. Domingue et al. suggested that “software visualization describes systems

that use visual (and other) media to enhance one programmer's understanding o f

another's work (or his own)” [Domingue 1992]. Muthukumarasamy and Stasko

described SV as “the use o f visualization and animation techniques to help people

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

understand the characteristics and executions o f computer programs”

[Muthukumarasamy 1995].

At present, the term Software Visualization is still quite broad, encompassing almost all

forms o f visualization concerned with representing any aspect o f a software system. To

date, a number o f taxonomies and surveys o f the software visualization field have been

published, however, their discussion is beyond the scope o f this thesis work.

3.3 Visualization in Maintenance and Re-engineering

The amount o f legacy code accumulated and its poor condition require powerful

specialized software tools to support various maintenance and re-engineering activities

[Chikofsky 1988]. During the last decade, a number o f software tools have been

developed to explore the application o f various visualization techniques in an attempt to

enhance program representation, presentation, and appearance to the user.

The majority o f recent tools (NestedVision3D [Ware 1993] [Parker 1998], Rigi [Storey

1998] [Rigi 1999] [Martin 2000] [Storey 2000], Visual Reengineering ToolSet [McCabe

1999]) perform interactive structural visualization o f code using graphs where nodes

corresponded to software artifacts (variables, classes, data types, functions, methods,

files, modules, etc.), and directed arcs corresponded to relationships between them

(function calls, data dependencies, inheritance relationship, etc.). Others see value in

preserving low-level detail o f the actual source code through enhancing its textual

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

appearance (SeeSoft [Eick 1992] [Ball 1996] [Eick 1998]). However, it is not always

clear how to present program information visually in a way that could significantly boost

understanding.

3.4 General Design Guidelines for Program Visualization

Although researchers have been exploring the matter o f creating effective visual displays

for quite some time, human visual perception o f visually displayed information is not

fully understood, and most o f the existing visualization systems are based merely on

heuristics and trial-and-error. However to date, enough research and practical experience

has been accumulated to isolate successful trends as well as to attempt some

generalization. This section presents some general heuristic design guidelines for

building successful information-conveying visualizations o f abstract data [Eick 1995]

[Ware 1999], particularly software [Storey 1997].

1. T ask specific: Focusing on the task fosters better understanding o f the visual

system ’s requirements and therefore leads to engineering displays and

representations to suit these needs.

2. Reduced representation: A reduced overview to display the entire target system on

a single screen should be provided to serve as navigation guide and coordination

mechanism for the finer, more specific views o f the data set. This overview

arrangement has to be pleasing, informative, and context-preserving, using

appropriate representations for the underlying data set.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3. Data Encoding: Color and other visual cues such as position, size (area, length,

height), shape (orientation), motion (blinking), etc. could be used to represent

information. O f all the ways to encode information, color is most powerful. It allows

for high information density displays, requires little training to enable subjects to

utilize information conveyed through the medium, can be processed pre-attentively

(Pre-attentive processing occurs prior to conscious attention), and is easy to

implement. However, some peculiarities o f color should be carefully considered for

they can impair its effectiveness. Although it is possible to display many millions o f

colors, only a small number o f them (13) can be rapidly discriminated. Color

resolution is not uniform along different axes (i.e., resolution on a black white axis is

much higher than along the yellow blue axis). Some perceptual distortions are

possible due to simultaneous contrast (e.g., background - foreground contrast, color

and brightness contrast). Another noteworthy issue is color-blindness that affects

about 8% o f men and 0.5% o f women. Most o f them have reduced abilities in

distinguishing reddish from greenish shades.

4. Metaphors: Use only familiar or readily inferred visual metaphors for the behavior

being presented to lower the cognitive load imposed on the user and increase the rate

o f comprehension. Use metaphors drawn from nature and everyday life in addition to

specific application domains.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5. Filtering: Use interactive filters to focus the display. By turning irrelevant bits o f

infonnation off, interactive filters can reduce visual and conceptual complexity o f

the system. An example o f a filter would be exclusive highlighting (re-coloring) bits

o f information that are o f interest.

6. Drill Down: “Drill down” techniques are useful for obtaining details about

particular items. Upon locating an interesting pattern, the user should be able to

access the actual underlying data values.

7. Multiple Linked Views: Presenting information in multiple views, each showing

one aspect o f the data and answering a specific question, can be more effective than

extracting all o f the needed information from a single, usually overloaded, view. To

be effective, these multiple views should be tightly linked to each other, such that an

operation performed in one view (for example, color manipulations) is instantly

propagated through the rest o f them.

8. Source Code Browsing: For many programmers, the source code o f the software

system is the most trusted form o f documentation. According to the integrated model

o f software comprehension [Mayrhauser 1995], programmers frequently switch

between top-down and bottom-up approaches. To facilitate program m er’s ability to

rapidly switch between a high-level view o f the software and low-level source code,

source code views must be seamlessly integrated into higher-level architectural

browsing.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9. User Interface: To increase the effectiveness o f visualization, allow the user some

degree o f control over the display by enabling direct manipulation o f any item on the

screen. An adequate interface, albeit intuitive to use, must provide constant and

continuous feedback.

Again, developing highly interactive visualization systems requires adequate

hardware support and careful software design to achieve acceptable degree o f

responsiveness.

10. Animation and Motion: For data sets with a temporal aspect, animation can be used

efficiently to show the evolution o f that data. One o f the most successful examples o f

animation so far is algorithm animation in ‘Sorting out Sorting4 [Baecker 1981].

Another good example is NestedVision3D-Trace [Parker 1998]. To be effective,

animations must be smooth and continuous: jerking stands out perceptually and thus

is distracting.

11. Graph Layout: The layout o f a graph (the relative sizes and positions o f nodes and

arcs) strongly affects readability. For software visualization, the graph layout must

be designed both to facilitate analysis o f the program and to reduce visual clutter.

12. 3D vs. 2D: The third (depth) dimension o f 3D graphics can be utilized to

considerably increase information density o f the screen without overloading it. 3D

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

representations augmented with proper viewing techniques (3D rotations, variable

view angles, etc.) and depth cues (motion, lighting, stereo, etc) generate more

efficient spatial layouts and reduce the number o f crossing and intersections. Ware

and Franck [Ware 1994] showed that “a [3D] static perspective image may add little

in comparison with a 2D diagram and adding real time rotation is considerably more

important.” In the same study, combining stereo with motion (head coupling)

resulted in a 200% increase in the amount o f information that could be understood.

Unfortunately, 3D graphical representations suffer from a number o f additional

problems (i.e., occlusion, disorientation, spatial complexity) and can get overly

complex for large graphs (only at higher threshold). Some tasks, such as pattern

recognition, are better supported by the 2D representation; 2D is also more

compatible with paper presentation.

The purpose o f the above guidelines has been to summarize the experience that has been

garnered in the area o f program visualization. These design guidelines are o f particular

interest to the current thesis work for they will be relied on in the process o f design and

implementation o f CloneMaster, the clone visualization system (Chapter 5).

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4 - Near Clone Identification with SelArt

This chapter describes a three-step integrative solution devised to extend the

functionality o f SelArt and to enable it to detect near clones. The chapter elaborates on

design and implementation details o f each o f the three steps together with some major

integration issues. Empirical validation o f the developed solution can be found in

Chapter 6 that presents results o f a redundancy analysis performed on an industrial

software system.

4.1 Background

When it comes to seeking near clones, the idea o f parameterized matching is by no

means new, nor is the idea o f ignoring all white space (except for new line characters)

[Baker 1992], [Johnson 1994a], [Kontogiannis 1996], [Ducasse 1999].

Traditionally, near clone detection is a three-step process. First, the code is transformed

into some intermediate format (parameterization). Second, a more or less sophisticated

comparison algorithm is executed to identify exact matches (code sections that match in

their parameterized form). Finally, a verification process examines all identified matches

to ensure that sections o f code encompassed by each match are either identical (exact

clones) or related via systematic renaming (near clones); matches that fail such

verification are rejected (false positive).

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 N ear Clone Detection with SelArt

Based on the condition that no modifications to SelArt per se were possible (no access to

the source code), considering successful accounts o f using parameterization reported in

previous work [Baker 1992] [Ducasse 1999], and based on our definition o f the term

‘near’ clone (section 2.4), the following integrated solution is proposed:

• Step 1. Pre-processing9: Prior to invoking SelArt, apply a text-to-text

transformation o f the source code to discard characters not to be considered for

matching (section 4.3). Such a transformation is not language independent and

requires specialized parsers.

• Step 2. Clone identification with SelArt:

1. Utilize the ability o f SelArt to seek exact clones in a stream (as apposed

to line oriented) input on the premise that in most modem programming

languages line structure is irrelevant and, thus, can be considered a matter

o f formatting.

2. Provide proper configuration o f SelArt (via its external parameters) to

ensure adequate correspondence between line-based and stream-based

matching.

• Step 3. Post-processing: Since the data considered for matching undergoes pre

processing transformation, results must be mapped back onto the original data set

(original source code). This step doesn’t have any bearing on the clone

9 In the context o f this thesis, the term ‘pre-processing’ is used to refer to an operation preceding
invocation o f the clone detection algorithm, whereas ‘preprocessing’ is used to refer to the 1st stage o f a
compiler that extends preprocessor directives.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

identification process itself, but it is necessary to relate two different reference

systems: source code before and after the pre-processing transformation.

Figure 4.1 clarifies the relationships between the steps by depicting the data flow

between them.

step 2: Clone
Identification

intermediate (compressed)
representation of source code

original source
code

step 1:
Preprocessing

clone info with respect to original source code
step 3: Postprocessing

Figure 4 .1 : Data flow o f the clone identification process

The current solution doesn’t contain a verification step traditionally inherent to

parameterized matching. This step is omitted based on the hypothesis (yet to be verified)

that when matches o f considerable length are being sought (very short matches are

mostly noise anyway), occurring o f false positive is quite unlikely. Furthermore, false

positive is more acceptable to us as it would be for some automatic solutions to clone

removal (i.e., [Baxter 1998]). Based on user interaction10, our approach alleviates the

complexity o f analysis necessary with an automatic approach while giving more

flexibility to the user. Besides, defining the threshold o f precision in clone identification

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

is virtually impossible due to the quite imprecise nature o f the underlying assumption

itself: if two code fragments can be generated by the same patterns then they could be

clones [Ducasse 1999]. False negatives (missed clones), on the other hand, produce a

challenging case since they are much harder to uncover.

The intent o f this implementation is to provide a means for materializing ideas,

experimenting with them, and to facilitate verification/rejection o f the underlying

hypotheses. It is intended to be a ‘prove-of-concept’ prototype, rather than a full-fledged

product.

4.3 Step 1: Pre-processing Transformation

Pre-processing is a text-to-text transformation with the purpose o f preserving high-level

(clones’) information from low level code by filtering out irrelevant detail.

The pre-processor is a set o f transformations specified using rules. It converts a program

written in an application-specific language into a program written in more general-

purpose pattern language by applying these rules. The pattern language is defined as a

set o f symbols that can be used as substitutes for lexical entities in the programming

language and, therefore, is an extension o f the application-specific language. Tokenizing

on a lexical level produces a sequence o f tokens; each token type has a rule associated

10 All identified clones are presented to the user for manual examination via the CloneMaster interface. At
this point, it is up to the user whether to accept or to reject a match.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

with it; this rule determines the kind o f action to be performed upon that token. The

mechanism o f pre-processing is summarized schematically in Figure 4.2.

outjaut stream= F(token type, rules)
(source code in pattern language)

Parser

jD
5
co
CO
§
o
« 5
cro

Figure 4.2: Diagram illustrating mechanism o f pre-processing.

Although one might argue for superiority o f the syntactic approach, the lexical approach

was chosen because o f its simplicity and sufficiency. The advantage o f simplicity is

important, particularly in multilanguage systems: constructing separate lexical analyzers

would require significantly less effort than constructing separate parsers, especially if

dealing with nonstandard language extensions or proprietary languages (quite common

in legacy systems).

For the purpose o f this thesis, C++ is used as a target (application-specific) language.

From this point on, the discussion is language specific. Nevertheless, the underlying

ideas remain language independent and could be extended to accommodate any

language.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input character stream
(source code in application-

specific language)

Scanner
(lexical analyzer)

stream of tokens Parser Engine

www.manaraa.com

In languages with textual-level preprocessors (e.g., C, C++, PL/1), unpreprocessed

source code should be considered for clone analysis to prevent possible loss o f structure

(i.e., manifest constants, inline functions, sharing o f inclusions) due to expansion o f

macros and other inclusions. Besides, expansion o f preprocessing directives causes the

code to grow in size that adversely impacts performance o f the clone identification

algorithm.

The following set o f rules is used to govern the pre-processing transformation:

Rule # Token Type Token Code Action

1. inline comment 6 discard

2. C-style comment 7 discard

3. blank 9 discard

4. string literal 10 output ‘L ’

5.* decimal constant 4 output ‘IN T’

6 : real number 5 output ‘FLO AT’

i \
octal/hexadecimal constant

(zero remains zero)
63 output ‘O X ’

8. character constant 11 output ‘C ’

9. identifier 1 output ‘I ’

10. preprocessor directive 8 discard

11. # if 0 block 57 discard

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Rule # Token Type Token Code Action

12. escape 66 discard

13. continuation sequence 69 discard

14. EOF 64 discard

*
15.

decimal constant or real

number or octal/hexadecimal

constant

4 or 5 or 63 output ‘N ’

16. direct component selector ‘.’ 34 o u tp u t‘A’

17.
indirect component selector

*->’
38 o u tp u t‘A’

18. any other type output ’as is ’

Table 4.1: C++ tokens with associated actions (full set o f participating tokens is listed in Table A. 1
Appendix A).

For instance, if a token is recognized as a comment or a blank (Table 4.1), it is ignored

and w on’t appear in the output. If token is a string literal, its lexem e11 is changed to ‘L ’

and that is how it will appear in the output stream. If a token is o f a type that has the

‘output as is ’ rule associated with it (i.e., keyword), it is relayed from the input stream to

the output stream with intact lexeme. However, for case insensitive languages (i.e., VB)

‘output as is ’ rule would have an additional step o f formatting the token lexeme using

letters o f the same case (uppercasing or lowercasing).

Rules 5, 6, 7 and rule 15 are mutually exclusive. When rule 15 is enabled, rules 5, 6, and 7 must be
disabled.
11 Lexical analysis converts strings in a language into a list o f tokens. Each token has a type and a lexeme.
The tokens are then passed to the parser for syntactic analysis. For example, ‘char’: token type is
‘keyword’, token lexeme is “char”

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A more concrete example o f one possible pre-processing transformation is depicted in

Figure 4.3. This example also illustrates the compacting effect o f the pre-processing

transfonnation that positively affects performance o f the clone detection algorithm.

 [\
\

intl=N;intl;charl=C;staticunsignedlongl=N;M‘ N+N; y

- j /

Figure 4.3: Example o f pre-processing transformation

The effect o f applying transformation rules is a lot like parameterization used by Baker

at el. [Baker 1992], However, it is broader than just parameterization, and is best

referred to as ‘unification’. In chapter 2, the term ‘software clone’ is defined as “a copy

o f existing piece o f code that underwent (possibly empty) modification”. Consequently,

the purpose o f unification is to somewhat reverse this potential modification by

representing the code via a unified pattern language, thus neutralizing the impact o f the

original modification.

Figure 4.4 further illustrates the unifying action o f pre-processing. The majority o f

changes generally associated with cut-and-pasting (i.e., modification o f identifier

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

//this is an example
int a = 3;
int b;
chare = V ;
static unsigned long d = 2001;
b = a*0.54 + 3;_______

Pre-processor

www.manaraa.com

names/constants/numbers, addition/removal o f comments, reorganization o f source code

page layout via formatting) can be adequately addressed by pre-processing based on

lexical analysis. However, there exist other possible modifications (interchanging o f

commutative operands in arithmetic expressions, rearrangement o f the sequence o f

statements) that may require more sophisticated (syntax) analysis. These modifications

are quite unlikely to occur [Baker 1992][Kontogiannis 1996] and are beyond the scope

o f the current work.

Since all analysis takes place on the lexical level, no information on name scope

resolution is preserved. One might argue that such loss o f information could potentially

lead to an increased probability o f false positives. However in practice, type information

(that is being preserved) could be used to reduce detection o f accidental clones, as many

such clones use different types in their computation.

Our current implementation does not distinguish between library identifiers and user

defined identifiers. Dealing with the source before the preprocessor has run makes it

impossible to trace nested library includes. Besides, the benefit o f having library name

resolution is unclear.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

//this is an example
int a = 3;
int b;
chare = 'Y';
static unsigned long d = 2001;
b = a‘ 0.54 + 3;

cloning

pre-processor

intl=N;intl;charl=C;staticunsignedlongl=N;l=rN+N;

//this is an example of cloning
//we'll just copy-and-paste and then
//modify this code fragment such that nobody would
//even suspect plagiariasm

int first_var = 99; int second_var,
charthird_var = 'N';

static unsigned long fourth_var = 1999;

second_var = first_var*0.54 + 7;

Figure 4.4: Unifying action o f pre-processing

The pre-processing transformation is implemented via a parser12 (Figure 4.2). This

parser is able to extract lexical information from C++ files before the pre-compiler has

run and to perform a set o f predetermined actions as discussed earlier. The parser takes

in a C++ source/header file, parses it, converts extracted information into intermediate

format (pattern language), and spits it out to a text file. The parser consists o f two

integral parts - a scanner (lexical analyzer) and a parser engine. The scanner is

responsible for reading the input characters and grouping them into lexical tokens. The

parser engine’s job is to handle these tokens and output them to a file.

12 The term ‘parser’ here is used in its generic meaning and doesn’t imply building a parse tree.

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The parser is designed to be robust in a sense that it does not give up when it encounters

constructs it can't parse; rather it proceeds, building an ‘error’ token until it finds a

construct that makes sense (a well-formed token).

4.3.1 Scanner Design

In order to accommodate a wide variety o f legacy systems, a superset o f the three most

popular C++ implementations (MS VC++, Borland Turbo C++, and GNU gee 2.4 C++)

was considered, as opposed to any single C++ implementation [Gee] [Ellis 1990]

[MSDN 2000],

Although standard tools (i.e., Lex or Flex) could’ve been successfully used to generate a

C++ lexical analyzer [Aho 1986], it was chosen to build one from scratch. The

constructed scanner is based on the algorithm proposed by DeDourek et al. in

[DeDourek 1980] for it is conceptually simple, easily extendible and lends itself well to

implementation.

The adopted approach is table driven and follows a ‘one character look-ahead’ scheme.

It consists o f the following four steps each o f which is further elaborated on in

subsequent sections:

1. Identification o f a list o f tokens to be recognized;

2. Construction o f state diagram for these tokens;

3. Use state diagrams from the previous step to build transition (driver) tables;

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4. Implement the scanning algorithm.

4.3.1.1 The Token Set

The complete set o f tokens selected for recognition is listed in Table A .l in Appendix A.

It is substantially wider than a conventional C++ token set and was influenced by the

following factors:

■ C++ language specifics;

■ Considerations o f clone identification;

■ Extendibility provisions;

■ Implementation specifics.

Definitions o f identified tokens are listed in Table A .2.

4.3.1.2 State Diagram Construction

In this step, state (transition) diagrams to represent tokens are constructed. A state

diagram consists o f a set o f nodes called states represented by circles, and a set o f

directed edges joining these states. Each edge is labeled with character class names. It is

required that this state diagram be deterministic (i.e., no more than one edge leaving a

given state is labeled with the same character class).

Character classes are defined by partitioning the set o f all valid C++ characters such that

every character belongs to exactly one class. The partitioning is also based on tokens

defined in order to facilitate their recognition. Identified character classes are listed in

Table A .3.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One state is designated as the initial state (state 0) where all recognition initiates. The

directed edge indicates the flow. If one is currently is state s' and there is an edge labeled

with character class k joining it to state t, one moves from state s to t i f the next character

read is a member o f character class k. Some states (depicted by double circles) are ‘final’

states that represent possible identification o f a token. A string o f characters is a token o f

a given type if and only if there is a path from state 0 to a final state for that token type.

As the source code is parsed, tokens are extracted in a way that the longest possible

token from the character sequence is selected.

Figure 4.5: Transition diagram for ‘identifier’ token (TokenCode = t). According to its definition
(Table A.2), identifier can start with a letter [a-zA-Z], an underscore or a $ followed by any number o f
letters, underscores, or $.

First, for each token identified in step 1, a state diagram needed to be built. Some simple

cases o f these state diagrams are presented in Figures 4.5, 4.6 for illustration purposes.

These ‘individual token’ state diagrams are then merged to form a combined state

diagram o f the entire token set. This combined state diagram made use o f over a 100

states. A fragment o f it is presented in Figure 4.7.

0 , 1 , 2 . 3, 4, 5, 6. 7.
8. 9, 10. 11. 25, 46,

48

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

anything but 38, 42,48, or 28

anything but 38, 42 or 47

Figure 4.6: Transition diagram o f a character constant token (TokenCode =11) defined as one or more
characters enclosed in single quotes (Table A.2).

Once a state diagram encompassing all identified tokens has been constructed, it has to

be converted into ‘computer friendly’ form. In DeDourek’s et al. approach, this is

accomplished by assembling two lookup tables: the NEXT STATE table and the

OUTPUT table [DeDourek 1980].

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

an y th in g b u t 4 2 a n d 47

4 2 ,4 7

Inline comment
(TokenCode=6)

mything but 22, 33, and 50.

Cstyle comment
(TokenCode=7)

anything but 22 and 47

division assignment
(TokenCode=50)

Figure 4.7: A fragment o f state diagram that facilitates recognition o f the following token types: ‘C-
style comment’ (TokenCode=7), ‘inline comment’ (TokenCode=6), and ‘division assignment’
(TokenCode=50).

4.3.1.3 Transition Tables

When fully constructed, both the NEXT STATE table and the OUTPUT table contain

one row per each state (plus ‘EOF’ and ‘Error’ rows) and one column per each character

class. In the NEXT STATE table, a reading from row s column c intersection indicates

which state t to transition to next (hence the name) if w e’re currently in state s and a

character o f character class c has been read. The corresponding entries in the OUTPUT

table indicate whether or not character just read should be included in the token

currently being formed. Zero entries indicate that the token is still under construction.

Non-zero values, on the other hand, mean two things:

1. The character just read is the beginning o f a new token;

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2. Token code o f just recognized token.

4.3.1.4 Token Recognition Procedure

An algorithm used to convert an input stream o f characters into a stream o f C++ tokens

is presented in Figure 4.8. Being an extension o f the original algorithm described by

DeDourek et al, it utilizes tables constructed in the previous step to determine whether

the character just read belongs to the token being built or indicates the beginning o f a

new token. Additions to the algorithm were necessary to accommodate trigraphs13 and to

track occurrences o f new line character.

Handling trigraphs can be seen as another example o f unifying action o f pre-processing:

When a trigraph is encountered, it is recognized as the punctuation mark it stands for,

and is replaced with a single character (‘[‘ for ‘? ? (\ for etc.). Conversion o f

tri graphs was intentionally built into the token recognition routine as opposed to

accommodation via yet another transformation rule.

13 Trigraphs are sequences o f three characters (beginning with two consecutive question marks) that are
used to represent certain punctuation characters in C/C++ source files with character sets that don’t
contain graphic representation for them. Trigraph sequences allow C/C++ programs to be written using
only the ISO Invariant Code Set that is a subset o f the 7-bit ASCII character set.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BuildToken(TokenCode, TokenLexeme, TokenLength)

static State = 0
static Char = '\0'

TokenCode=0
TokenLength=0

TokenLexeme-"

State=0

TokenLength
•YES-,

max_length

NO YES

TokenLexeme(TokenLength)=Char
TokenLength++

YES
Char=getNewChar()

CharClass=getCharClass(Char)

Char='\n’ sync_counters+-yes-

n«|-

TokenCode=OUTPUT[State][CharClass]
State=NextState[State][CharClass]

TokenCode=0

NO

correct
TokenLexeme.

TokenLength
Token=trigraph

‘okenCode found in
Keyword list. TokenCode=keyword•yes-

identifier

Return

Figure 4.8: Token recognition algorithm

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3.2 The Parser Engine Design

The parser engine part o f the pre-processor (Figure 4.2) is an agent that enforces

transformation rules defined in section 4.3. It is made configurable, such that a (sub)set

o f rules to be used can be easily controlled by the user. Such flexibility allows the user

to experiment with various combinations o f transformation rules and helps to make the

clone detection process as precise or imprecise as the user wants it to be since various

types o f approximate matching can be accommodated by discarding different parts o f

the input.

Rules 3, 12, 13,and 14 (see Table 4.1 for details) are made unconditional. Other rules

can be turned on and o ff upon user’s discretion. In cases when rules 1,2, 10, or 11 are

turned off, lexemes o f corresponding tokens will be preserved after extraction o f all

occurrences o f new line character, blanks, and/or escape sequences within these tokens.

The error token deserves special attention. Currently, there is no transformation rule

defined for it and, therefore, it is preserved. Under the assumption that syntactically

correct code is being parsed (a pretty safe assumption in case o f legacy systems), errors

should never occur. However, error tokens could be caused by oversights during

construction o f state diagrams or unaccounted transitions, therefore they should be

preserved.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3.3 Implementation o f the Pre-processing

Implementation o f the pre-processing process was developed using object-oriented C++

on a UNIX workstation (sun4u spare SunOS 5.6). The resulting system consists o f the

main module implementing the scanner/parser design discussed above and a number o f

supporting modules described later in this section. All modules support command line

mode as the only available interface.

4.3.3.1 The Parser Module

The parser module has the following parameters:

■ Input/output buffer size. For efficiency reasons, the parser uses buffered

input/output.

■ Maximum number o f characters allowed in a token. This param eter limits the

number o f characters that are being remembered for each token and does not

affect token recognition process.

■ List o f C/C++ source and header files to be parsed. Details on creation o f this list

are covered in section 4.3.4.2.

■ Input directory - a path to a directory that is at the root o f the source tree.

■ Output directory - a path to a directory where output o f the pre-processing is

stored. The output directory mirrors the hierarchy o f the input directory with the

only exception that the processed files are marked with an additional suffix ‘.U ’.

For example, output corresponding to TNPUT_DIR/my_dir/fileX.C’ will be in

‘OUTPUT_DIR/m y_dir/fileX .C.U\

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Mapping directory - a path to a directory where supplementary information

needed for mapping results o f clone identification on the pre-processed code

back to the original code is saved. The mapping directory mirrors the hierarchy

o f the input directory with the only exception that the files are marked with an

additional suffix ‘.posh For example, a file TNPUT_DIR/my_dir/fileX.C’ will

produce the following entry ‘M APPING_DIR/m y_dir/fileX .C.pos\

■ Rule configuration parameters. Allow the user to specify transformation rules to

be enabled for a pre-processing session.

4.3.3.2 Discovery o f Directory Structure

The current implementation o f SelArt does not allow for the selection o f files for

analysis. Consequently, all files found in the specified directory tree are analyzed. Thus,

for efficiency reasons, any files that are not o f interest from the clone finding perspective

have to be removed from the directory tree prior to analysis.

This thesis is concerned with C++ source files only; hence, all supplementary files (i.e.,

different configuration files, batch files and scripts, makefiles, .html files, .asm files, .def

files, .rc files, binary files, .txt files, etc.) are to be ignored. To facilitate this, a command

line utility has been created that recursively traverses the specified directory tree and

inspects file extensions for each file found. I f the extension indicates that the file is

indeed a source file (.h, .C, .c, .cc, .cxx, .C++, .cpp), its path is recorded; otherwise, the

file is deleted. This list o f recorded paths is then used to communicate to the pre

processor the files to be parsed.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3.3.3 Preservation o f the Line Structure

One o f the major challenges faced during implementation o f pre-processing was to come

up with a mechanism that would allow relating character offset information in pre-

processed code to the line structure o f the original (non pre-processed) code (refer to

section 4.5.3 for more detail). The solution found is both simple and accurate.

Information on original line structure is preserved via maintaining auxiliary ‘.pos’ files

in the MAPPING_DIR. A ‘.pos’ file contains data (offsets in terms o f number o f

characters from the beginning o f the corresponding ‘.U ’ file) on where new line

characters would have been in the pre-processed source. The mechanism shown in

Figure 4.9 is used; For an example o f a ‘.pos’ file refer to Figure 4.10.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Offset
TokenLexeme_finai
TokenLength_final
NumOfNewLines

NO

YES

lumOfNewLine:
= = 0 ?

 YES

NO

Token is
discarded ?

Offset = Offset + TokenLength_final
Output 'TokenLexem e_final to'.U‘

Output 'O ffse t to '.pos'
NumOfNewLines = Num OfNewLines -1

Figure 4.9: Line tracking algorithm. ‘Offset’ - current number o f characters in the output (i.e., ‘.U ’)
file; ‘TokenLexeme_final’ - lexeme to be output; ‘TokenLengthfm al’ - number o f characters in
TokenLexeme final; ‘Num OfNewLines’ - number o f new lines originally contained within the token.

4.3.3.4 Supporting Statistics

To facilitate comparability o f clone detection results between non-pre-processed and

pre-processed source code, a pair o f complementary statistics is collected: average

number o f characters per line (ANCPL) and compression rate (CR). Both statistics are

self-explanatory (defined by formulas below) and are used in calculating o f SelA rt’s

configuration parameters (section 4.4.2).

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ANCPL =
CHARS _ BEFORE

LINES
(4.1)

„ CHARS _ BEFORE
CR —--------------------------- (4.2) , where

CHARS AFTER

LINES - total number o f lines in the system.

CIIARS BEFORE - number o f characters before pre-processing

CHARS AFTER - number o f characters after pre-processing.

4.4 Step 2: Clone identification with SelArt

As was mentioned in section 2.5.5, SelArt supports both line oriented and fixed length

(stream) modes. By default, it works in line mode and only falls back on fixed length

mode when the lines are very long or there are no line-end characters. Clearly, systems

subject to any degree o f pre-processing will enforce stream mode behavior due to a lack

o f line-end characters.

4.4.1 Line-Oriented to Stream Input Conversion

To eliminate the possible impact o f the mode variant on the results o f clone detection

between pre-processed and original source code, a simple line-end elimination operation

is used. If no pre-processing is to take place, before invoking SelArt, all files in the

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I N P U T D I R are scanned for new-line characters that are discarded. At the same time,

‘.pos’ files are generated in the MAPPING_DIR in a manner very similar to the one

described in section 4.3.3.3.

4.4.2 SelArt Parameters

Section 2.5.5 described four parameters that SelArt provides to give the user some

degree o f control over the matching process. In the context o f stream mode operation,

their purpose is explained below:

■ / - target clone size in number o f lines. It is used in calculation o f other parameters

(M, m) since size o f clones is more naturally to be expressed in terms o f number o f

lines rather than number o f characters

ANCPL * /
■ M - determines number o f characters in a snip: M = --------------- (4.3). ANCPL is

CR

calculated by formula (4.1), and CR by formula (4.2). It is guaranteed that all

matches o f at least size M will be found.

■ m — m = M

■ c - to eliminate possible inaccuracy introduced by culling, it is turned o ff by setting

c - M .

* target path - absolute path to a directory node; all files residing in this node’s

subdirectories will be recursively analyzed.

Although the meaning o f these parameters is discussed elsewhere (section 2.5.5),

calculation o f parameter M needs some further explanation. In line-oriented mode, the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

parameter that determines the target clone size is /. In stream mode, however, that’s M.

In order to be able to compare results o f clone analysis o f the same source code with

different pre-processing transformations, it is important to ensure that param eter M

adequately reflects the compacting effect o f such transformations. Formula 4.3 is a

simplistic but adequate way to achieve this.

4.5 Step 3: Post-processing o f Clone Identification Results

4.5.1 Original Result Presentation

SelArt partitions the source input into disjoint snips constructed in such a way that all

the information about identified matches is represented as matches on these disjoint

snips (SelA rt’s combine-and-split strategy is discussed in section 2.5.5). This

infonnation is organized as a set o f records (one per snip) in a flat ASCII file (grpl.l)

suitable for automated processing. Each record contains the following fields o f interest:

• Snip Number. Snips are numbered in the order in which they are found in files.

• Beginning Offset. This field indicates the beginning o f the snip as a character

offset within the file.

• Ending Offset. This field indicates the end o f the snip as a character offset.

• Hash Value. Snips with matching hash values have the same contents.

• File Number. This is a number sequentially assigned to each file seen.

• File Name. This is a full (absolute) path name o f the file.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.5.2 Filtering Information for Future Analysis

Although only matches o f some size M and greater are requested, the result file could

contain a substantial amount o f considerably smaller matches (by-products o f SelA rt’s

combine-and-split strategy). Some o f them are meaningful matches; some o f them are

noise.

To give users control over the amount o f information preserved for future analysis, a

notion o f noise threshold is used by the post-processor. Simply put, only clones with

sizes equal or greater than the noise threshold are kept during post-processing.

4.5.3 Conversion o f Clone Boundaries

The stream mode o f clone identification, especially when preceded by pre-processing,

necessitates conversion o f information on clone boundaries from the character offset

representation in the pre-processed source code back into the line number representation

in the original source code. This step is very important because clone boundaries

reported with respect to the pre-processed source coordinate system are meaningless in

the original source coordinate system. The conversion is a mapping between the two

coordinate systems and is achieved by interpreting the contents o f corresponding ‘.pos’

files produced during pre-processing under the MAPPING_DIR directory tree (refer to

section 4.3.3.3 for the algorithm used). The Beginning/Ending Line Number is

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

determined by simply counting the number o f entries in the ‘.pos’ file with values less

than the Beginning/Ending Offset (refer to Figure 4.10 for more explanation).

O O O O O O O D O O O O O G O Q O 19 3 5 52 69 8 6 8 6 1 0 4 1 3 4 1 5 7
1 8 5 2 0 8 2 2 8 2 5 4 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 2 8 7 3 2 3 3 2 3 3 4 0 3 4 0
3 6 2 3 6 2 3 8 2 3 82 3 8 2 3 8 2 3 6 2 3 8 2 3 6 2 3 8 2 402 4 2 0 4 2 1 4 5 4 4 5 5 4 6 9 4 7 0 4 9 9
5 1 7 6 1 1 6 1 6 6 9 7 7 0 3 7 2 1 7 9 1 82 6 8 2 7 8 2 7 902 9 2 6 9 5 7 9 8 1 1 0 3 7 1 0 3 8 1 0 6 9
1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1 1 8 9 1 2 2 1 1 2 2 2 1 2 3 7 1 2 3 8 12 5 2 1 2 5 3 1 2 5 3 1 2 5 3 1 2 5 3
1273 1 3 2 5 1 3 2 6 1 4 0 1 1 4 2 4 1 4 3 9 1 4 8 3 1 4 9 7 1 4 9 8 1 4 9 8 1 5 1 8 1 5 9 4 1 5 9 5 1 6 7 0 169 3
1 7 0 6 1 7 7 3 1 7 7 4 1 7 7 4 1 7 9 4 1 8 7 3 1 6 7 4 1 9 4 9 1 9 7 2 1 9 8 7 2 0 5 5 2 0 5 6 2 0 5 6 2 0 7 6 2 1 5 2
2 1 5 3 2 2 2 8 2 2 5 1 2 2 6 6 2 3 3 1 2 3 3 2 2 3 3 2 2 3 5 2 2 4 2 9 2 4 3 0 2 5 0 5 2 5 2 8 2 5 4 3 2 6 0 9 2 6 1 0

Figure 4.10: An example o f a ‘.pos’ file. Each entry indicates a position o f a discarded new line
character expressed in terms o f character offset within the pre-processed source (‘.U ’ files). This file can
be read as follows: the first 17 lines o f the original source were discarded, 18th line was compressed to 19
characters, 20th line was compressed to 35 - 19 = 16 characters, . . . , 23d line was discarded, etc.
Conversely, to convert clone boundaries expressed via character offsets to line numbers, just count the
number o f entries with values less than the corresponding offset. This count is in fact the line number. For
instance, character offset o f 144 translates into line number 25.

In cases o f aggressive pre-processing, some clone boundaries may be miss-reported (at

most 2 line miss). Another case o f information loss occurs when clones begin/end m id

line. However, these are acceptable in the context o f the clone analysis process. Overall,

the mechanism showed to be reliable.

4.5.4 Implementation Details

Post-processing is implemented via a simple utility that sifts through the clone

identification result file (grpl.l) seeking records corresponding to clones o f sizes

exceeding some threshold (controlled via a parameter). These records are retained in an

intermediate result file o f the following format:

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• Clone Number. Clones are numbered in the order in which they are encountered

in the grpl.l file.

• Beginning Line Number. Indicates the first line o f the clone (converted from

character offset).

• Ending Line Number. Indicates the last line o f the clone (converted from

character offset).

• Hash Value. Same as in grpl.l file.

• File Number. Same as in grpl.l file.

• Relative File Path. This is a path to the file relative to the target directory o f

SelArt’s analysis (converted from absolute path).

To facilitate the use o f the acquired clone data in subsequent phases o f clone analysis

(i.e., clone data presentation and clone data interpretation), it makes sense to store the

data in a relational database rather than a flat file. Delegating data management to a

Database Management System (DBMS) delivers many benefits. The most important o f

which in the context o f this work, is provision o f infrastructure for convenient and

efficient interaction with the data (retrieving, querying, updating, inserting, or deleting),

as well as enforcement o f data integrity and elimination o f data redundancy. The

database design issues are discussed in the next chapter within the context o f the clone

visualization tool - CloneMaster.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.6 Closing Rem arks

This chapter describes a method for extending SelArt into a tool that can be used to find

near, non exact, clones. The strength o f the above solution is its simplicity, flexibility,

and extensibility. The degree o f clone similarity required for a match is easily controlled

through configuration. New transformation rules can be defined and easily

accommodated based upon user’s needs. Currently, only one programming language

(i.e., C++) is supported. However, support for new languages can be easily added.

To fulfill the requirements o f this thesis, the implementation is based on one particular

implementation o f a text-based comparison technique, SelArt. Nevertheless, the

proposed approach is generic and will work for any representative o f the text-based

comparison technique.

A high degree o f confidence in the effectiveness o f the approach and the implemented

solution has been gained through extensive experimentation.

Results o f the clone identification process are delivered in a form o f a textual summary.

These summaries could be hard to work with due the abstract nature o f the information

they contain and the sheer quantity o f this information. Issues o f efficient clone data

presentation are the subject o f the next chapter. Chapter 6 provides some experimental

analysis o f the nature o f clones and their occurrences in an industrial sized software

system. It also attempts to evaluate, from the perspective o f software understanding and

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

maintenance, some potential benefits o f extending the clone identification process to

accommodate near clones.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5 - Clone Visualization Prototype: CloneMaster

Many publications propose various ways o f identifying cloned components in a software

system [Baker 1992] [Johnson 1993][Mayrand 1996] [Baxter 1998]. However, it is still

not clear how a clone detection technology can be applied in an industrial software

development process in order to achieve significant savings. This thesis attempts to

address the issue by investigating the feasibility o f a visual tool that not only delivers

clone data to the user effectively but also provides a powerful means o f interacting with

that data in order to facilitate various software engineering and maintenance tasks.

This chapter introduces CloneMaster, - a clone visualization tool developed as a core

part o f this thesis work. This chapter briefly explains motivation behind the tool,

discusses some related work, defines a set o f requirements for the tool, and then

proceeds with detailed description o f some major design and implementation issues.

5.7 Motivation

The problem o f understanding, navigating through and manipulating complex

infonnation spaces is now arising in a wide range o f application areas, and it is

becoming increasingly important to provide tools that offer sophisticated support to

users with these tasks.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In Software Development and Software Maintenance, for example, the systems tend to

be large and complex and normally involve a large number o f programmers, who,

besides maintaining an overall understanding o f the system they are working with, are

often interested in acquiring more detailed knowledge o f some particular aspects o f that

system. Hence, depending on the task, the system must be analyzed from different

perspectives (e.g., control flow, data flow, class structure, memory allocation,

input/output, profile information, etc.). To assist software engineers with some o f these

tasks, various visual tools have been developed (e.g., class browsers, animators,

integrated development environments, software visualization tools, etc.). However, these

tools are usually o f a quite general nature and, thus, fail to adequately support working

on particular aspects o f program understanding. Any solution that tries to be all things to

all users tends to be a poor solution to any one o f them plus to be intolerably complex.

Therefore, the emphasis should be on being extremely clear about the goals and building

specific tools for specific jobs. If desired, these tools can be then bundled together to

form multifunctional tool suites. Alternatively, they can be implemented as plug-ins to

be used from other applications.

Many cognitive m odels14 have been proposed that describe how programmers

comprehend code during software maintenance and evolution [Mayrhauser 1995][Storey

2000]. It has been also generally accepted that the comprehension strategy employed

depends on a variety o f factors dictated by the maintainer, the software system and the

task. Therefore, it would be favorable for a tool to support a wide array o f

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

comprehension strategies. Minimally, such a tool must help maintainers with the key

activities [Tilley 1996] inherent to any comprehension process:

■ Data gathering through static analysis o f the code or through dynamic analysis o f

the executing program.

■ Knowledge organization by organizing the raw data by creating abstractions for

efficient storage and retrieval.

■ Information exploration through navigation, analysis, and presentation.

Ideally, a tool should provide the user with some sort o f task oriented ‘information

workspace’ [Card 1999], Centered on one or more visual components (visualizations),

such an ‘information workspace’ combines the presentation o f carefully selected and

organized information related to the task with some effective mechanisms for access,

retrieval, and manipulation o f this information to facilitate knowledge crystallization.

5.2 Related Work

Although software clones have attracted a fair amount o f attention in the recent years,

very few user-friendly tools exist to support their analysis. Existing systems focus

primarily on issues related to clone localization, while delivering insufficient support for

other aspects o f clone management.

14 A cognitive model is a program understanding strategy that uses existing knowledge together with the
code and documentation to create a mental representation o f the program (i.e., Bottom-Up, Top-Down,

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Traditionally, results o f clone identification are presented via textual summaries, which,

due to information overload, tend to be overwhelming, difficult to interpret, and

therefore inefficient in solving real world user problems. Yet, some attempts have been

made towards exploring other, mainly graphical, means o f presentation o f such

information. Baker [Baker 1992], for example, used simple scatter plots (Figure 5.1) to

visually show distribution o f clones in a software module. The plots used identical

horizontal and vertical axes to depict lines o f source code o f the module (referenced by

their ordinal numbers). Each dot on the plot corresponded to a line o f code that had been

encountered in the module twice. The corresponding reading o ff the horizontal axis

identified the location o f its first occurrence, whereas the reading off the vertical axis

gave the location o f its clone. Accordingly, matches spanning more than one consecutive

line appeared on the plot as line segments, with the length proportional to the size o f the

match. Exact matches produced line segments parallel to the main diagonal o f the plot (a

45° axis); line segments corresponding to approximate matches might not be strictly

diagonal due to possible differences in sizes o f the originals and their corresponding

duplicates15.

Knowledge-based, Systematic and As-Needed, etc.) [Mayrhauser 1995]
15 These differences occur because some irrelevant details (i.e., white space, comments, etc.) are ignored
during the matching stage, while line numbering remains unaffected by these omissions (i.e., line numbers
are the original line numbers in the module).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5.1 : A scatter plot generated by Baker to visualize clone occurrences in a file. The axes depict
line count; clones are represented via line segments

Baker’s graphical representation o f the clone data is straightforward, easily interpreted,

and cheap to generate. She was able to combine both the ‘b ig ’ picture o f clone

occurrences in a software module (number o f clones, their size, and distribution within

the module) and the detailed picture (right from the chart it is possible to deduce which

segments o f code has been replicated, how many times, and where the duplicates are

located) in the same view. One apparent limitation o f her method, however, is its poor

scalability. Since the size o f the plot is directly proportional to the m odule’s size, large

modules produce plots that are difficult to read due to their enormous physical size and

information density. The number o f plots generated depends upon the number o f

modules comprising the system. As the number o f modules increases, referencing

becomes an issue. Other noteworthy weaknesses o f Baker’s approach include lack o f

support for source code browsing, navigation, and interactivity.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Nonetheless, visualization proposed by Baker was an important event in clone data

presentation for it explored, for the first time, the potential o f using visual media to

communicate what was traditionally considered textual data.

A similar scatter plot based approach to clone visualization is discussed by Ducasse et

al. [Ducasse 1999] who report successful results o f visualizing occurrences o f exact

clones both within the same file and between several files. They claim that generated

visual representations are useful for practical software maintenance and re-engineering

tasks. Poor scalability and high degree o f visual redundancy are identified among the

major drawbacks o f the system.

Johnson [Johnson 1996] describes “visualization and navigation o f textual redundancy

based on the technology o f HTML and the World W ide W eb”. He suggests representing

the match data via a network o f entities and links, with links based on different

relationships between the entities. He uses six basic entity types, such as file , directory>,

snip, hash, clusterl6, and component.

• File and directory entities are self-explanatory.

• A snip is defined as a sequence o f characters that occur in a file. Snips associated

with a file partition that file; that is, the file is a concatenation o f the snips it

contains.

• Flash is a numerical value characterizing a snip. Two snips are said to match if

they have the same hash value.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• A cluster is a set o f files that share a number o f matching snips. Each file belongs

to at least one cluster (singleton cluster is a cluster that contains a single file;

each file has a singleton cluster associated with it).

• A component entity is associated with another way to partition the set o f files.

Some possible relationships between these entities include: file or directory to parent

directory, snip to the file containing it; snip to hash valu o', file to a cluster containing it;

hash to the cluster implied by its match set; cluster to the component containing it;

cluster to cluster containment relation; etc. Each entity possesses a certain attribute (key)

through which it can be accessed (i.e., File_ID, Snip_ID, Hash_ID, etc). Actual values

o f these keys are generated for each instance o f the entity during the analysis stage.

The layout o f Johnson’s tool is as follows: Each instance o f the above entities is

mapped to an individual HTM L page, whereas the relationships among them are

implemented via various hypertext links between these pages. Figure 5.2 shows the page

for cluster 1948, a typical multiple-file cluster page. ‘Previous’ and ‘N ext’ links point to

clusters 1947 and 1949 respectively. ‘Files’ section enumerates all the files the cluster

contains (cp/parse.c, cp/parse.h, c-parse.c, c-parse.h, and objc-parse.c) and provides

links to corresponding/?/e pages. ‘Superclusters’ and ‘subclusters’ sections provide

linkage to all upper and lower level clusters that involve files constituting the cluster

#1948 (i.e., sub-clusters increase the size o f the matches by reducing the set o f files;

super-clusters do the opposite). Under the stippled line, the content o f the matching snip

16 Johnson’s usage o f the term cluster is different from the one used throughout this thesis (consult

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(ten lines o f #defines) for this cluster is shown with a link to the corresponding hash

page.

Other pages (i.e., directoiy page,file page, hash page, snip page, and component page)

exhibit analogous structure. For example, a file page consists o f a list o f all snips

constituting that file. For each snip, links to corresponding hash and snip pages are

provided together with links to all cluster pages for which there is a match involving this

snip.

Organizing information hierarchically allowed Johnson to achieve some degree o f

information hiding: Upper level pages, such as component and multi-file cluster pages,

give just an overall breakdown o f the match structure, while most detail becomes

available via exploring lower level pages (hash, file , singleton cluster). Hiding unneeded

detail reduces the information load on the user, while making that detail available on

demand.

Johnson’s approach, best described as text-based visualization, allows presenting large

amounts o f match data in a systematic and meaningful way. Unlike Baker’s case, ‘drill

dow n’ capabilities together with low level detailed views are supported; yet the global

structure o f clone proliferation is not explicitly communicated, forcing the user to form

it him self by mentally integrating multiple local views (the problem o f focus and

Chapter 2 for the appropriate definition). What Johnson refers to as a ‘cluster’, in the context o f this thesis,
corresponds to the term ‘file span’ o f a clone.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

context17). However as the complexity o f the system grows, such integration quickly

becomes virtually impossible. Another apparent deficiency o f the Johnson’s approach

pertains to its navigation technique: It has been previously observed that following

hyperlinks may cause disorientation resulting in loss o f context, especially when a place

o f interest is several pages away. Moreover, the underlying data model is far from being

intuitive. Some o f its parts {component entity and all relationships pertaining to it, for

example) exhibit complexity levels not appropriate for a generic user.

Although Johnson didn’t use any graphics per se, his tool is an important milestone in

the yet to be completed quest for effectively organization and presentation o f clone data.

In conclusion, presenting clone information visually holds a lot o f potential and practical

benefits. Although substantial progress in the area o f devising efficient visual displays

has been made, clone visualization techniques and tools are yet to come o f age. One o f

the objectives o f the current research is to contribute to the field by exploring different

approaches to presentation o f clone information via devising a visual tool, CloneMaster,

and evaluating its effectiveness. The rest o f this chapter covers the design and

implementation o f the tool.

17 In system visualization, a conflict between small-scale and large-scale structures is known as the
problem o f focus and context. Ideally, it should be possible to view details at arbitrary depth level (focus)
without loosing the high-level perspective o f the system (context).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

& I He Edit tlit'iu Go B ookm arks O ptions D irec to ry UUndaui

m : N e tscap e : C lu s te r tQ4H: ftnilil RMGTI 0 1

m i s m m m i l i p (Si
.Ho**..-: Open »

C luster 1948: 0 .abL 8M 8T 10
Previous Next
F ile s : o ej£«SBit2CŜ

o 0 MP“ >rr>‘iw 5f h o L
o G.b«>c-y.f?e.ji o 5̂JX -riSf&!

Total ju c o f these fijes:
67X49 ■

Sue of match involeing these files:
203

Log (base 2) o f match size:
7.66

Super Clusters (b y decrease in log match size):gA-y.u
Sub Clusters (b y increase in log match size):

2.S3 sjma
3.1 G UMS6 49

C o m p o n e n t:
C cnpostfr.t 0

:T10

(H a s h S2P63 0 abL O M aT IO
0 * V n 0 l0 L 3 M 3 IQ * L 3 T ;Q

7 a d e t i n e IIiE K T IF lE P 268
6 a d e f m e TYPENA11E 269
9 * d e l m e SCSFEC 2 60

13 * d e t m e t t f e s f e c 261
11 ‘ d e f i n e T fP E QUAL 2 62
12 ‘ d e f i n e CONSTANT 263
13 ‘ d e f i n e STRING 264
14 * d e t i n e E L L IP S IS 26S
15 ‘ d e f i n e S IZ E O f 266
1 6 a d e l l n e ENUH 267

U4?I$

Figure 5.2: V iew o f the Cluster #1948 Page

5.3 Formulating Requirements for the CloneMaster Tool

The ultimate goal o f this research work is to ensure more reliable and more cost

effective re-engineering and maintenance by providing software practitioners with a

visual clone exploration environment that would facilitate the clone analysis and clone

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

management facets o f the software development process. The scope o f this tool should

be navigation, analysis and presentation o f the clone data.

Developing functional requirements for a clone visualization tool turned out to be a

challenging task on its own. Due to the novelty o f the topic o f clone visualization and

very early stages o f development o f the clone management industry in general, there has

not been accumulated enough experience to allow one to scope out a precise set o f

requirements for a clone visualization tool that would be clear, sound, complete, and that

would ensure a viable solution. Given these conditions, requirements for CloneMaster

have been compiled based on pieces o f knowledge garnered from multiple sources such

as:

■ Observations in the areas o f clone management, software engineering, software

maintenance, and software visualization.

■ Knowledge gained from other related work.

■ Survey o f industrial software development and maintenance experiences.

■ Application o f best software engineering and maintenance practices.

■ A uthor’s experience in software development and maintenance.

■ Common sense and imagination.

The following requirements have been identified for CloneMaster to satisfy:

1. Effective presentation o f the overall clone information.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The tool’s visual display should present the user with an easy to interpret visual image

(map) o f clone distribution within the system. The organization o f the clone map should

provide a clear picture o f which pieces o f the system ’s code have been cloned and where

their cloned counterparts reside. Some form o f overview o f the entire system should be

always kept available while pursuing detailed analysis o f some o f its parts to help the

user stay in context (i.e., not to lose the high-level perspective o f the system). It should

be possible to identify both individual clones and patterns o f clones.

2. Effective use o f auxiliary data (e.g., statistical, source code view) to supplement the

information pictorially conveyed via clone map.

It is desirable to provide the user with some additional statistics on each clone entity,

each cluster entity, and the system itself. These data should be made available upon

request, not to overload the display with excessive amount o f information. However,

access to the details should be easy, fast, and smoothly integrated into the overall

context to avoid disruptive attention shifts.

Information available on any clone entity should encompass:

■ Length

■ file it resides in

■ location within the file (starting position, ending position)

■ cluster it belongs to

■ cardinality

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ contents o f the clone

Infonnation on a clone cluster should include:

■ size

■ enumeration o f fdes associated with the cluster (file span o f the cluster)

General statistics describing the system as a whole should comprise the following:

■ size o f the system (number o f files, number o f lines)

■ min match length guaranteed to be found by the clone identification procedure

(parameters M, 1 specified at the invocation o f SelArt)

■ noise threshold (‘Split-and-Combine’ phase o f SelArt can produce clones that

are smaller than specified above. Noise threshold is used on the stage o f post

processing o f the clone results to eliminate noise)

■ percentage o f found duplications

■ number o f clones

* clones distribution by size

■ number o f clone clusters

■ clone clusters distribution by size

■ number o f file clusters

■ number o f files affected by cloning

■ percentage o f clones occurred within the same file vs. percentage o f clones

occurred between different files

■ file clusters distribution by size

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The tool should support direct navigation to a clone’s source code from any instance o f

clone display to allow the user to inspect its actual content. At any time, it should be

possible to have as many open source code views as desired. These source code views

should be displayed in separate windows to augment, not to occlude, the global picture

o f clone distribution in the clone map.

3. Analysis based on a file entity.

For any file in the system, it should be possible to determine how it is composed o f

clones and to track down other files that have matches with it (clone clusters, file

cluster).

4. Analysis based on a clone entity

Upon choosing any clone entity on the clone map, it should be possible to:

■ obtain detailed information about this particular instance

■ visually identify in the context o f the clone map other instances o f the same

clone entity

■ view information about the clone cluster this clone is part o f

■ easily navigate between different clone instances in the cluster

5. Analysis based on a clone cluster entity

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For a certain cluster, it should be possible to activate all o f its clone members such that

they stand out perceptually in the context o f the clone map. Information on this cluster

(see above) should be made accessible at this point.

6. Navigation issues (cross-reference browsing)

Some means o f navigation should be provided to allow the user to maneuver in the

clone hyperspace: follow certain logical links between different entities (i.e., files,

clones, clone clusters) for the purposes o f knowledge acquisition (e.g., discovering

cluster structures, exploring file sets sharing certain clones, etc.) or performing

some specific task (e.g., propagating a bug fix). Such navigation should make

sense to the user conceptually, as well as it should be easy to perform technically.

Moving around must not take too many steps, and the route to any target must be

discoverable.

7. Query support and report generation

It is fundamental to enable dynamic querying capabilities against the context in

order to facilitate information retrieval. The results o f these queries should be

presented in a form that makes best sense and is most effective (i.e., pictorially, as

a textual summary, as a table, or an interactive histogram). The minimum set o f

queries to be supported is listed below with more useful query ideas to evolve in

the course o f practical application o f the tool:

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ clone size range search

■ clone clusters size range search

■ file clusters size range search

8. Using views

Using different views o f the same data should be considered where appropriate. Views

can highlight pertinent data, show relevant data while hiding irrelevant information,

sharpen the focus, clarify the issue, etc.

9. Supporting source code browsing and editing

Since CloneMaster is intended as a maintenance tool, built-in source code browsing is

an absolute must. Support for making (and saving) changes to the system ’s source code

should be also supported.

10. Handling o f false positive

It is important to give a user an ability to judge for him self and therefore, reject

(permanently) a clone instance if a case o f false positive is suspected. In this situation,

the user should be able to either mark that instance or permanently remove it from

consideration.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11. Language independence

CloneMaster is not a programming language centered tool; it, thus, should be highly

generalized to deal with any system written in any language.

12. Scalability

The technology should be capable o f handling a wide range o f software system

sizes, especially in the medium to large range.

13. Other Requirements

■ overall ease o f use

■ pleasantness o f use

■ confidence in results generated

Usability o f the tool is critical to its effectiveness. Poorly designed interfaces can induce

extra cognitive overhead. Available functionality should be visible and relevant and

should not impede the more cognitively challenging task o f clone analysis. W here

appropriate, meaningful orientation cues should be used (to indicate to the users where

they are, how they got there, and where to go next).

14. Design Standards

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Use guidelines o f the program visualization framework summarized in Chapter 3:

■ effective presentation style

■ suitable layout algorithms to display graphs in more meaningful manner.

■ meaningful visual abstractions and attributes

15. Target audience

The tool caters towards software professionals with programming background,

especially in software maintenance. Thus, strong understanding o f basic computer

science concepts is assumed. However, no specialized knowledge should be required.

16. Physical Environment Constraints

An average stand-alone workstation should be sufficient to run the tool. Since just a

prototype is being attempted, the physical environment is constrained mostly by the

resources available to the author (MS W indows 2000 Professional SP1, 192MB RAM,

18.6GB hard drive).

17. Extensibility

The tool must support the addition o f new views.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CloneMaster is a proof o f concept prototype system to explore ideas in the domains o f

clone visualization, cognition and management, not a full-blown commercial product.

Although the list o f requirements was developed to be as complete as possible, the

intention o f the prototype is only to demonstrate some key design and visualization

concepts without necessarily attempting to meet all o f the requirements.

5.4 CloneMaster Design and Implementation Highlights

The following considerations are fundamental to the CloneMaster design:

■ The user does not always know what he is looking for and, thus, he may not be

able to search for something specific. Consequently, the explorative approach not

based on prior knowledge or anticipation must be well supported and facilitated

(i.e., browsing, discovery, range searches, proximity searches).

■ A requirement o f instant and accurate evaluation o f the clone situation.

■ The sheer volume o f data to be presented.

■ Multidimensional data analysis (file entity based, clone entity based, clone

cluster entity based, file cluster entity based).

5.4.1 Usage Scenarios

Functional requirements o f the CloneMaster clone visualization system are represented

using use cases. An informal and imprecise modeling technique, use cases describe the

system at a high level from the user’s standpoint. Each use case defines a particular

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

aspect o f what the user wants to do with the system and the most usual course o f this

action. A set o f main use cases identified for the CloneMaster visualization system is

presented in Figure 5.3.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CloneMaster

between clone clusters

explore clone distribution

between file clusters

find all clonessearch for a clone

find all file clusterssearch for a file cluster

search for a clone cluster find all clone clusters

'clone size distributiongeneral statistics

view system properties^
cR>ne CIUSTer

file span distribution clone cluster size distribution

view system statistics
analyze system

size distribution file cluster size distribution

analyze directory tree analyze file

software professional

analyze file cluster

view file properties

identify file cluster

analyze file
identify clones analyze clone

view clone attributes view contents

analyze clone

identify clone cluster analyze clone cluster

locate other instances

identify file cluster
view clone cluster attributes

enumerate clone cluster clones analyze cloneanalyze clone cluster

view statistics
view file cluster statistics

analyze file cluster

analyze clone

enumerate file cluster files enumerate file cluster clones

clone based

perform dynamic queries file cluster based
«extends>:

clone cluster based

Figure 5.3: Main use case scenarios o f the CloneMaster visualization tool

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.4.2 CloneM aster Data Organization

As discussed in Chapter 4, the underlying clone data is maintained and manipulated

using an almost fully normalized relational (MS SQL Server v.7.0) database. The data

model o f the CloneMaster database is quite simple and was carefully designed to

provide as much advantage to the application as possible. It is fully described in

Appendix B.

The CloneMaster schema maintains information about clone structure o f the analyzed

system and is based on such fundamental entities as clone system, file, clone, clone

cluster, and relationships between them. W hile the file, clone, and clone cluster entities

were defined in Chapter 2 (section 2.4), the term ‘clone system’ requires further

clarification.

Within the context o f CloneMaster, the term ‘clone system’ is used to refer to the result

set o f clone identification process applied to a software system rather than the software

system itself. The clone identification process can be uniquely identified in terms o f its

parameters (i.e., pre-processing configuration, target snip size, and noise threshold).

Distinct results (or clone systems) are achieved when the same body o f source code

undergoes clone identification with different parameters.

One important characteristic o f the data model is that it does not provide complete

information about directory tree structure associated with the body o f source code o f the

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

analyzed software system. Nor does it store the source code itself. Consequently, the

source directory tree has to be available in order for the clone data to be mapped onto it.

Database population with clone data is outside the scope o f CloneMaster. However as

part o f clone analysis process, a supporting utility, DBManager, was created to assist the

user with this operation.

5.4.2.1 Database manipulation with DBManager

DBManager is a GUI utility that provides the user with a simple interface to the

CloneMaster database while keeping the underlying schema completely transparent.

These manipulations include adding a new system, deleting an existing system, and

modifying an existing system. Figure 5.5 shows ‘M ain Menu ‘ and ‘Add System ’

screens. To add a system, the user needs to specify a target database, choose a name for

the system being added, provide some relevant infonnation about the system (pre

processing details, target snip size, noise threshold, optional comments), and point to a

file that contains results o f clone identification. Once complete information is supplied,

DBManager parses the file, extracts clone information, and inserts it into tables.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

-1 Hi *1 %» Adding a System

llr̂ tihat Catalog (cfo
Inaroe)

‘alaSouco (itaitrti
4 db server) ■nbs<|ipa<*ouko' jClor>«Meslei

system Name MySysiem

|N o«e Threshold, Imes[T arget srap length
BPerameief I in SelAtfi. lines

jAny comments about the system go here

AFT P_MANAGERs.tlones_c^rsed1_1 OJ 0 tin

M ”W>

Figure 5.4: DBManager Graphical User Interface

5.4.3 Graphical User Interface Organization

Figure 5.5 shows the CloneMaster display, which is composed o f four panes (left,

middle, right, and bottom) and a set o f menus:

■ The left pane presents a directory tree based or file-based view. It represents

source directory tree o f a software system and shows a clear picture o f clone

distribution in the system. This view presents clone information from the point o f

view o f their physical location within the context o f software system ’s source

tree. The view renders an explorer-type directory tree with clone nodes hanging

off corresponding file nodes. Each clone node is identified by a combination o f

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that clone’s nam e18 and the name o f its clone cluster. To facilitate pre-attentive

processing, files, and recursively folders, that contain clones are color-labeled

blue as well as their labels are extended to display the number o f clones found

underneath that particular node (displayed in brackets).

■ The middle pane is a clone cluster19-based view. This view shows software

system’s decomposition in terms o f clone clusters. The set o f clone clusters

identified in a system is organized in a tree-like fashion. Each clone cluster node

is labeled by its name with its size showed in brackets. Children o f a cluster node

represent clones that belong to that cluster.

■ The right pane is a file cluster-based view. This view allows the user to

investigate file clusters found in the system by analyzing how they are composed

o f files and what matches these files have in common. Similar to the clone

cluster-based view, a file cluster node is identified by its name and the number o f

files it is composed o f (displayed in brackets). In turn, for each file node, its

clone structure is revealed.

■ The bottom pane (can be collapsed/expanded on demand) provides system

description (i.e., parameters o f the clone identification process).

18 Name is not an attribute o f clone, clone cluster, and file cluster entities. It is just a string generated for
referencing convenience.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Menus supported in CloneMaster include static menus (along the top edge o f the

window) and pop-up dynamic menus with cross-browsing support.

Figure 5.6 illustrates the graphical conventions used in CloneMaster to represent

different objects in redundancy analysis. W henever possible, system metaphors are used.

When custom metaphors are used, they are designed to be as intuitive and instantly

recognizable to the user as possible.

CloneMaster uses multiple views to present the data to the user from different

perspectives and to enable different exploration routes. Distributing data between

multiple views also alleviates the problem o f overcrowding o f a single view. Each view

is based on a fundamental entity o f redundancy analysis (i.e., clone, clone cluster, or file

cluster). W ithin each view, a tree-based representation leverages a familiar and easily

understood common way o f depicting hierarchical data as well as the ability to collapse

certain graphical structures into a single node (information hiding). All views use the

system node as their root node.

' The notions o f ‘clone cluster’ and ‘file cluster’ are discussed in section 2.4.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i C loneM aster [p a rse d 2 _ 2 0 _ 2 0]

System](jew Statistics Queries System Information

d:\TestSystem (parsed2_20_20)
Q) mozia(552)
[-1 b base (33)

H topcMc(5)

- I n i xi

0 nsEscape.h
: 0 nsFleSpec.h

B t o nsFleStream.h(5)
■ *i------

CLN_'2: CLR_’45
% CLN_3:CLR_45
% CLN_4: CLR_96
% CLN_5: CLR_96

0 nslSizeOfHardler.h
B to src (28)
S tests

D build
t o caps (14)
S t o delude (4)

0 admin.h
Q jpermissionh
0 nsCsps.h
0 nsCapsEnums.h
0 nsCCapsMartager.h
0 nsCCapsManagerFactory.h

B - r ^ X a t P m d p a l h l l)

fifel CLN.1 :CLR_214
0 nsCCodebasePrincipaLh

® B nsCCodeSourcePrindpath (1)
0 nsL&adZig.h

B B nsPrindpalhfl]
0 nsPrivflege.h
0 nsPrivfegeManager.h
0 nsPriviegeTable.h
0 nsS ̂ temPrivHeqeT able. h ^

U B CLR_33(2) 3
rs t o M_34(2>
I® iC jan_35(2|
1+] E CLfl_36 (2J
E - B j d l l :17|2|
ffl E CLR_38 (2)
0 B CLR_39(7)
ffl B Qfl.40 (2)
EE B CUU1 (2)
IE E CLR-42 (3)
E E B CLFL43 (21
a B n f | « raa B ofl̂ p)

^ d:\TestSystemSmozlaSbase\fKjbEic\nsFaeS
% d:\TestSystemVrioala\base\pUjtic\rttFieF

S B CLR_46{3)
a B o b . 47(2)
a B a-n_«P)
a B an_4api
a B uiuopi
a B afl_5 i PI
a B n n w p i
a E jafl_53P> ffi B'lH 5412]
a B a -R_55 [3)
a B CLR-5G (2)
a B a n fe';i|
s B an.58 (2)
a B m 59;?l
a E o JL60 (2)
a B on_Gi (2)
a B o R - ^ P !
a EC LR 63(21 i f 1

EH 0 FCLR_70 (1)
a # FCLR_71 (1)
IB # FCLR.72 (1)
0 0 # FCLR 73(1)
IB # FCLR.74 (1)
a 0 FCLR_75 (2)
a # FCLR_76 (1)
a ■0- FCLR_77 (1)
a 0 FCLR_78 (2)
a 0 FCLR.79 (1)
a #FCLR_80(1)
a # FCLR 81 (2)
a 0 FCLR_82(1)
a # FCLR_83 (1)
a 0 FCLR.84 (1)
a #FCLR_85(1)
a 0 FCLR_86(1)
a 0 FCLR_87 (2)
a 0 FCLR_88 (2)
a 0 FCLR_89 (1)
E W FCLR 90(1)

a B B S

ur

"3

0 FCLR.
' FCLR.
FCLR.
0 FCLR.
#FCLR.
f c lr .
0 FCLR

aN_1 : CLR_45
aN_2: CLR_45

% aN_3: CLR.45
l% CLN_4: CLR_96

CLN_5: CLR.9G
91(1)
.92(1)
93(1)
.94(1)
.95(1)
96(3)
97(11

Item 1 Value Rule Nunber I Rule Description ±\
System name parsed2 20 20 Ri4e1 Discard inline comments n
Noise thieshold 20bnes Riie 2 Discard C-styta comments _ i
Min target snip size 20 lines Rule 3 Discard blanks
Comment 1 Z3.4.5.6.7.8.9.10.11.12.13.14.16.17.+ nesting Rule 4 Change string Nterals to I.'

Rule 5 Change decanal constants to 1NT'

_ i i f 1« ± ... I H
fl^le 6 Chanae real ncmber* to FLOAT'

Figure 5.5: CloneMaster GUI display (main window).

o a i □ n % e #

Figure 5.6 : Icons used in CloneMaster. From left to right: folder without clones, folder containing
clone(s), file without clones, file with clone(s), clone, clone cluster, and file cluster.

Figure 5.7: Using color-coding for highlighting. From left to right: cross-referenced clone instance,
cross-referenced file, cross-referenced file cluster, and active clone instance.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The views are permanently displayed side by side with the file-based view serving as an

anchor - an overview window that allows the user to stay in context while exploring

other views or navigating between views. The file-based view is best suited for this role

because it is the most concrete o f the three views on one hand. On the other hand, for

most users the natural way o f thinking about a software system, especially an unfamiliar

one, is in terms o f its source tree structure.

CloneMaster is a single-document interface (SDI) application, such that only one system

can remain loaded at a time. However, to accommodate cross-system comparison

analysis, multiple concurrent instances o f CloneMaster are allowed.

5.4.3.1 System Loading

As discussed above, the CloneMaster database stores only information on clones and

their locations. Therefore, the root node o f a directory tree has to be provided during

system loading to associate clone infonnation with the actual source directory tree.

To build the file-based view, the loading process performs dynamic discovery and

rendering o f the source directory tree. For each file found, a database lookup returns

information about clone structure o f the file that is integrated with the directory structure

during rendition.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

i» . t o a d S y s te m

Data Source: Initial Catalog:

System to be loaded

patsed2_20_20

> d: [Local Disk [

U THESIS
: I vb_samples
_]V P N

Load Cancel

Figure 5.8: ‘Load System ’ dialog. Allows the user to pick the system from the list o f all available
systems and to specify the corresponding source tree.

The clone cluster-based tree is built next, while the file cluster-based tree is built last.

The clone cluster-based tree is built directly from the database. Conversely, file clusters

have to be discovered first. A recursive procedure uses the two existing trees to build file

clusters before organizing them in a tree-like fashion.

All trees are fully pre-constructed during system loading. Moreover, some additional

infonnation is pre-stored within the tree data structure to minimize database access.

Although this makes for a sluggish start, it is a sensible tradeoff for it significantly

improves responsiveness o f the tool during operation. Rapid feedback is important

because it makes the user feel in control o f the data exploration process.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.4.3.2 Menus, Navigation, and Interaction Techniques

CloneMaster provides the user with a wide array o f task specific interactive techniques

for working with the data: static menus, dynamic pop-up menus, dynamic queries, and

“mouse over” mode.

Static menus provide the following functionality:

■ Manipulate a single view or multiple views in terms o f extending trees,

collapsing trees, selectively extending branches to reveal all clones, reverting

color-coded icons to their normal state.

■ Calculate and deliver graphically (histogram or pie diagram) system statistics

such as cloned code ratio, clone size distribution, clone cluster size distribution,

clone cluster file span distribution, and file cluster size distribution. Figures 5.9

and 5.10 show two examples o f such statistical analysis.

■ Perform dynamic queries against the data. This aspect o f CloneM aster’s

functionality is covered in the next section.

■ Enable/disable the “mouse over” mode. “Mouse over” is a real time interaction

technique that allows the user to obtain additional information about any

particular node by simply positioning the mouse pointer over it. The mouse

position is tracked; the node under the mouse pointer becomes activated, and its

label changes to display an extended summary o f the node’s attributes. W hen the

mouse pointer moves away from the node, the node becomes deactivated, and its

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

label changes back to the original form. For example, for an activated clone node

the following infonnation is displayed: path o f the parent file, clone’s starting

position, clone’s ending position, clone’s length, corresponding clone cluster,

and clone’s cardinality.

i i . p a r s e d l_ 2 0 _ 2 0 : Cloned Code R atio

IO C

2 0 Pie 2D Bar Cloned C ode Ratio

lines o f co d e

| non cloned (229252 loc)

cloned (16047 loc)

Figure 5.9: Pie diagram showing amount o f cloned code vs. non-cloned code.

Another type o f menus supported is pop-up menus. These menus are activated via right

mouse click and are context-sensitive: they offer different choices depending on the

object selected. If the user right-clicks on a tree node, a menu specific to this node’s type

pops up. A typical node menu consists o f options to display the node’s attributes and to

identify this node in the other views (cross-referencing). Right-clicking outside the

nodes activates a menu that allows one to manipulate entire view(s) (collapse trees, clear

images, enable/disable “mouse over” mode, etc.). Examples o f node specific and generic

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

menus are shown in Figure 5.11. Pop-up menus help to achieve the so called ‘drill

down’ effect where the user can obtain more detail without losing context.

i*. parsedl _20_Z0: Clone Wslribul

Clone Distribution by Sire

180 *,

1 60 -

140 -

120 -
O
c 100 -
krt 80 -
u

bU -

4 0

2 0 • I
s
t*>

1
I
s
£

■
S
i o<©

1
&o

o«To §
oo

o
3

oC4
2
o£ CO

a<M
o

o•*r
(\l

sr j
o
<N

*£> I

3m Qa
c*

3
s

1 60

140

120
100

30

m
40

20

0

20 Select histogram bucket width 378
Rebuild Histogram

Figure 5.10: A histogram showing clone distribution by size built with bucket width o f 20 lines. The
slider at the bottom allows the user to adjust the width o f the bucket and to rebuild the histogram using the
new setting.

Collapse

Clear images
s/ 'Mouse Over' Mode

View System Statistics

Clear Left Pane

Clear Middle Pane

Clear Right Pane

Clear All Panes

% CLN_5: C L R J2 6
F b nsPluQinTaolnfo.hHI

 ^ mm ------
test

O npsimple.cpp
D resource.h
O stubs.c
O stubs2.cpp

surity

f r e e n a v

E l & m a c b u ild

O SecurityConfig.h

Show clone information
Show clone contents

Locate clone in clone cluster based view
Locate d one in file du ste r based view

Show cluster information

Show cluster members

Figure 5.11 : Pop-up menus. The menu on the left is a generic menu that appears when the user clicks
outside a node. It allows to manipulate the view in general and mirrors the options offered by the ‘V iew ’
static menu. The menu on the right is a clone node menu that enables actions specific to the clone entity.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

For clone nodes and file nodes, CloneMaster supports direct navigation to the

corresponding source code. Right clicking on the node and choosing ‘Show clone/file

content’ option from the node specific pop-up menu brings up a separate window

displaying the source code. To make cloned fragments stand out perceptually, they are

rendered in different color. Source code windows are equipped with caret position

tracking (i.e., line and column) that makes it easier to navigate through the code and to

perform cross-examination between multiple code windows.

When ‘Show instance (i.e., file, clone, clone cluster, etc) inform ation’ option is selected

from a pop-up menu, this information is displayed in table form in a separate window.

Figure 5.12 is a typical example o f how the information is displayed for a clone instance

Clicking the ‘Show other instances’ button extends the window to list all other instances

o f that clone. Clicking on a row will reveal the location o f that particular instance o f the

clone in each view.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

P ath Clone ID Start Line End Line Length j Cluster ID

t e l dA TestSystem \m o2illa\modules\plugin\src'>nsplugin.cpp

< {

CLN_13 938 981 44 CLR_5?

I H

j S to w olher instances

Path Clone ID Start Line End Line Length Cluster ID

t e l d:\T estSystem \m oziaW >odule$\plugin\src\nsPluginM anager.cpp CLN_S 893 736 44 CLR_57

te) d:\Te$tSyslem \nw 2ia\rocd>Je4\plugin\$fc\roPluginM .anagef.cpp CLN_7 881 924 44 CLR_57

t e l d.\T estSy$tem\m o2ia'unodiiesSplugin\stc^n.splugin.cpp

« j

CLN_12 750 793 44 CLR_57

I ►!

CLN_1 j ! d :\TeslSystem \m o£te\m odules'ip lugtn \sic\nsplugin .cpp

Figure 5.12: Example o f clone instance information. A summary o f attributes o f clone CLN_13 located
in ‘d:\TestSystem\mozilla\modules\plugin\src\nsplugin.cpp’ file is displayed.

Since entities may simultaneously appear in more than one view, the ability to cross-

reference them becomes important in order to link them together. CloneM aster supports

interactive identification o f an object selected in one view by highlighting it in all views

in which it appears. This is achieved via two mechanisms: the corresponding brunches

are extended to ensure the target node’s visibility, plus the node itself is highlighted.

These visual clues point the user to where to go next and, therefore, are central to view

navigation.

CloneMaster uses color-coding to achieve persistent highlighting (Figure 5.7). W hen the

highlighting is no longer needed, it can be cleared through the ‘Clear Im ages’ menu

option.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.4.3.3 Query Support

One prominent feature o f CloneMaster is its ability to perform interactive queries

against the data. Queries aid in the data exploration process. By partitioning the data set

according to certain criteria, they allow the user to focus on specific aspects o f the data.

CloneMaster currently supports the following groups o f queries:

■ Based on clone entity: clone size range search.

■ Based on clone cluster entity: cluster size range search, file span range search.

■ Based on file cluster entity: file cluster size range search, file cluster proximity

search.

Figure 5.13 depicts an example o f a dynamic query based on clone entity. The two

sliders allow the user to select search criteria. In this case, all clones with sizes between

100 loc and 150 loc were sought. Four clones that satisfied this condition are listed in the

results pane. The results pane is made interactive to provide “jum p and show”

capability: choosing the ‘Locate Clones’ menu option will visually identify highlighted

clones in all views that they appear.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

QESSSSES
l Define search condition

i Lower limit

ZO: Clone Size B anqe Search *1

[~ No lowei limit

20 378

Upper limit

-J-
f ~ No upper limit

QUERY: { Find a l clones satisfying the folowing condition: 10CF> size <»150 Search

Results pane

Clone ID I Start Line | End Line I le n g th | Cluster IDPath
d:\Te$ISyslem\mozilla\jpeg\jidctint,c
d \T estSystenri\mozilla\jpeg^ifdctint c
d \TestSv$tem\mozia\niodules:\piuqn\stc\nsPluqinT aqinlo cpp
d:\1estSystem\mozilla\mQdules\plugtn\src\nsplugin.cpp

CLN_1 28
CLN 1 26

Locate Cls>ne(s)

132
132msm
1695

105 CLR_22
107 CLR_22

R H n E m
112 CLR 10

I clones found

Figure 5.13: Example o f a dynamic query based on clone entity.

5.4.3.4 Comments on Implementation

CloneMaster is built in Visual Basic 6.0. VB offers strong support for developing GUI

applications, and, more importantly, allows creation o f user interfaces with a look and

feel o f a traditional MS W indows interface. This consistency allows to leverage user’s

familiarity with the environment that, in turn, significantly improves the chances o f the

application acceptance by the user. Another factor in favor o f Visual Basic is its relative

“friendliness” in terms o f programming effort and, thus, productivity.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CloneMaster is implemented as a conventional three-tiered solution consisting o f the

user services layer, the business services layer, and the data services layer. Figure 5.14

illustrates the architectural model o f CloneMaster. The three layers are briefly

summarized below:

■ User services layer- provides visual interface for presenting information and

gathering data.

■ Business services layer- manages requests from the user to execute a

business task, maintains business rules that dictate policies for manipulating

data.

■ Data services layer- possesses extensive knowledge o f database

organization; maintains, accesses, and updates data.

To ensure data integrity, all multi-table operations that involve data updates are

implemented using transactions. In case a failure occurs, the changes are automatically

rolled back leaving the data in a consistent state.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

User Services

D B M anager GUI C loneM astre GUI

Business Services

COM server

{B usiness R u les L ayer

Data Services

COM server

j D ata A c c e s s L ayer

DB

Figure 5.14: CloneMaster architecture: conceptual view.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6 - Industrial Experience and Evaluation

This chapter presents a study designed to evaluate the clone analysis process developed

and implemented throughout this thesis. To carry out this evaluation, a large body o f

well-known public domain source code was chosen.

6.1 Selecting the Case Study

The study encompasses all stages o f the clone analysis process (i.e., clone identification,

clone data presentation, and clone data interpretation). It focuses on the following goals:

1. Prove the potential o f our approach, - the comprehensive clone analysis process.

2. Study the effect o f different degrees o f pre-processing on the results o f

redundancy analysis.

3. Evaluate potential benefit o f extending the clone identification process to

accommodate near clones.

4. Analyze the nature o f clones and their occurrences.

5. Evaluate the usefulness o f the visual clone management tool (CloneMaster).

6. Evaluate the scalability o f the approach under two aspects:

■ Does it scale given the size o f the source code itself?

■ Does it scale given the amount o f duplication identified?

7. Identify potential deficiencies and devise strategies for their elimination.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.2 Choice o f Source Code Test Case

For the purpose o f this evaluation, the source o f one o f the mini-releases o f the Mozilla

browser (v.l .0) was used. Mozilla, available via http://www.iriozilla.org, is an open-

source web browser known to the world as the Netscape Communicator client. M ozilla

is implemented in C++, JavaScript, and some embedded assembler. Mozilla C++ source

code is highly modular and follows the rules o f OOP. After filtering out all irrelevant

files20, approximately 7.5MB (246,000 lines o f code) o f source code distributed between

689 files in 98 directories remained to be analyzed.

The Mozilla software system was selected based on the following criteria:

1. It is well known and freely available in source form.

2. It is o f sufficient size.

3. The majority o f it is written in C++.

4. It seemed likely to contain source code clones for the following reasons:

■ Mozilla is a cross-platform application (Windows, Mac OS, Unix

(Solaris, Irix, Linux)) that supports multiple web technologies and

protocols.

■ Mozilla underwent numerous successive releases.

■ Mozilla was partially developed by numerous independent developers

(one o f the benefits o f being an open source).

20 As discussed in Chapter 4, current implementation o f pre-processing supports only C++ implementation
files.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.iriozilla.org

www.manaraa.com

5. M ozilla is still evolving and, therefore, makes good material for subsequent

releases analysis.

6.3 Evaluation Procedure

The procedure used for the evaluation is depicted in Figure 6.1. This procedure derives

from the clone analysis process outlined in Chapter 1 (Figure 1.1) and contains the

following stages:

Stage I - Clone Identification:

First, different degrees o f pre-processing (discussed in the next section) were

applied to the original source code. Next, SelArt was invoked (with appropriately

adjusted parameters21) on each system to perform clone detection. The minimum

size o f match to be found was set at 20 lines.

Stage II - Clone Data Presentation:

Result reports produced by SelArt for each system were further processed to

extract information about clones o f size no less than 20 lines and to convert

information about clone boundaries into a meaningful form (line numbers). During

the next step, this information was transformed into a set o f database tables.

Finally, each system was loaded into a separate instance o f the CloneM aster GUI.

Stage III - Clone Data Interpretation:

21 These parameters are discussed in section 4.4.2.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The author performed careful examination o f each system as well as comparison

between different systems via the visual interface o f CloneMaster, leveraging its

navigation capabilities, dynamic query support, and reporting mechanisms.

S o u rce C ode

Line EliminatorP re -p ro cesso r

^ Noise
Threshold

Figure 6.1: Experimental process

Pre-processing, clone identification and post-processing were performed on a UNIX

workstation with two 400MHz UltraSPARC-II processors with 2GB o f RAM running

Solaris 2.6. The rest o f the experiment (including hosting the data base) was conducted

on a Pentium III 800MHz laptop with 192MB o f RAM running W indows 2000.

SelArtS tream S o u rce

R esu lts R eport
grpl.l P o s t-p ro cesso r

In term ediate R esult
File

c lones.fin

DB M anager

C loneM aster
Visual
ToolS ource

C ode

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Two different pre-processing configurations were applied to the original M ozilla source

code to produce two distinct systems ‘parsed 1 ’ and ‘parsed2\ These pre-processing

configurations are descried in Table 6.1.

To provide a baseline for comparison, one more system was created by eliminating only

new line characters from the Mozilla source code. From this point on, this system will be

referred to as ‘original’.

Pre-processing Details Systems

Rule # Rule Description parsed 1 parsed2

1. Discard inline comments X X

2. Discard C-style comments X X

3. Discard blanks X X

4. Change string literals to ‘L ’ X

5. Change decimal constants to T N T X

6. Change real constants to ‘FLO AT’ X

7. Change octal/hexadecimal constants to ‘O X ’ X

8. Change character constants to ‘C ’ X

9. Change identifiers to ‘I ’ X

10. Discard preprocessor directives X X

11. Discard ‘# if0 ...# e n d if blocks X X

12. Discard escape sequences X X

13. Discard continuation sequences X X

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Pre-processing Details Systems

Rule # Rule Description parsedl parsed2

14. Discard ‘EO F’ X X

15. Change all numeric constants to ‘N ’

16. Change direct component selector ‘.’ to ‘A’ X

17. Change indirect component selector ‘—C to ‘A’ X

Pre-processing Time, sec 108 109

Table 6.1: Comparison o f pre-processing configurations between parsedl and parsed2 systems.

The initial hypothesis was that pre-processing would help to find more clones:

■ in addition to ‘exact’ clones, ‘near’ clones would also become detectable;

■ higher degree o f pre-processing would reveal more ‘near’ clones.

Therefore, the amount o f identified duplication was expected to increase as we moved

from ‘original’ system to ‘parsedl ’ and then to ‘parsed2’ respectively.

To reduce the amount o f data for further analysis, any identified clones with sizes under

20 lines were ignored. Thus, all data and inferences presented below only apply to a

particular subset (i.e., 20 lines and greater) o f clones present in the Mozilla system and

may change if a different subset o f clones is considered.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6.4 Clone Detection Results

This section presents and interprets results o f clone identification performed under

similar conditions after three different degrees o f pre-processing had been applied to the

Mozilla code. The three systems described above (i.e., ‘original’, ‘parsedl ’, and

‘parsed2’) were loaded into the CloneMaster tool and studied using the facilities

provided by the tool. The outcome o f this analysis is discussed below.

original parsedl parsed2

Degree o f pre-processing
none little (discarding)

extensive (discarding +

tokenizing)

Type o f clones identified ‘exact’ ‘exact’ + ‘near’ ‘exact’ + ‘near’

Min target clone size, lines 20 20 20

Noise threshold, lines 20 20 20

Number o f files analyzed 689 689 689

LOC analyzed 245299 245299 245299

Number o f clones 310 303 552

LOC cloned 16783 16047 26520

Percentage o f cloned code 6.8 6.5 10.8

Number o f clone clusters 126 139 252

Number o f file clusters 40 45 105

Table 6.2: Summary o f major statistics from the experiments.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 6.2 summarizes the major statistics obtained from the experiments, the type o f

pre-processing performed for ‘p a rsed l’ (Table 6.1) actually caused a slight decrease in

both the number o f clones found and the amount o f code shared between these clones.

Yet, the number o f clone clusters and the number o f file clusters identified in ‘p arsed l’

was larger than in ‘original’. ‘Parsed2’, as expected, showed a significant increase in all

categories o f measured characteristics with respect to both ‘original’ and ‘parsedl ’.

The three clone systems were scrutinized with the help o f CloneMaster to verify and

interpret these results. The results o f this analysis are summarized below:

■ The ‘original’ system produced a set o f all exact clones in the Mozilla code that

were longer than 20 lines.

■ For the most part, clusters o f exact clones identified in ‘original’ were also found

in ‘p a rsed l’. Some clones in ‘p arsed l’ had bigger sizes than their counterparts in

‘original’ due to the elimination o f editing idiosyncrasies and/or discrepancy in

comments. However, when a clone in ‘original’ started or ended with a

comment, it came out shorter in ‘p a rsed l’ exactly by the size o f the comment

(i.e., comments were ignored). In some cases, removing the comment made the

clone shrink below the minimum target snip size and, thus, to be completely

missed during the clone identification phase or rejected at the post-processing

phase as noise.

■ Some clones identified in ‘original’ consisted entirely o f comments, especially in

the beginning o f the file, preprocessor directives, or combination o f the two

(Figure C .l). These clones were missed in ‘parsedl ’ and ‘parsed2’. This was

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

quite typical since many files in Mozilla system started with a standardized

header (enforced by the Mozilla Coding Style Guide) that was longer than 20

lines. For instance, just 3 clone clusters in ‘original’ encompassed 39 clones (27,

7, and 5 respectively) that were o f that nature. Consequently^ the number o f

clones in ‘p a rsed l’ was slightly lower than in ‘original’, whereas the number o f

clone/file clusters actually was higher.

■ ‘parsedl ’ revealed some new clusters that were not detected in ‘original’. These

clusters were near clones differing just in editing detail, comments, or blocks o f

conditional compilation (#if 0 ... #endif). See Figure C.3 in Appendix C for an

example.

* ‘parsed2 ’ produced a large increase in the number o f new clone clusters (113)

containing more interesting matches. Clones revealed in ‘parsed2’ system were

mostly cut-and-paste copies o f each other that underwent successive

modification (name changes, value changes, addition/deletion/modification o f

comments, editing changes). A typical example o f such near clones is depicted in

Appendix C Figures C.4 and C.5.

■ Some exact clone clusters reported in ‘original’ and ‘parsedl ’ did not appear in

‘parsed2’. This was typical when periodic strings (i.e., ones that contain a

repetition such as ‘A B A B A B A B A B ...’) were produced during tokenizing. A

known bug in SelArt caused combining and splitting such periodic strings to

produce a series o f short matches (i.e.,‘A B ’) as opposed to one long match.

Figures C.6 and C .l further illustrate this scenario. Quite infrequent with

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

untokenized source, the problem intensifies when the source is aggressively

filtered.

* In terms o f individual length o f cloned fragments, the three systems were quite

consistent. The majority o f clones were under 100 lines, however, matches

longer than 300 lines were also found. Figure 5.9 from the previous chapter

shows clone distribution by size for ‘parsedl ’.

Clone cluster size examination revealed that the majority o f clones in all three systems

had a cardinality o f 2 (i.e., had just two instances). However, increasing the degree o f

approximate matching allowed one to uncover more multi-instance clone artifacts

(Figure 6.2).

«
o 0%
O.

o r i g i n a l p a r s e d l p a r s e d 2

Figure 6.2: Clone clusters break down by size.

Figure 6.3 presents the distribution o f clones found within the same file versus between

different files. The majority o f near clones happened within the same file. Exact clones,

on the contrary, showed a tendency to span different files. However, as suggested by

120

■ m u l t i - i n s t a n c e

□ p a i r s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 6.4, the clone cluster file span in Mozilla system rarely exceeded two files. The

noticeable decrease in complex (i.e., multi-file) clone clusters from ‘original’ to

‘parsed2’ is due to the fact the loss o f some exact clones as discussed earlier (i.e., 100%

comments, periodicity).

100%

80% -

60% -

40% -

20 % -

o r ig i n a l p a r s e d l p a r s e d 2

B b e t w e e n d i f f e r e n t f i l e s

□ w i t h i n t h e s a m e file

Figure 6.3: Duplication within the same file vs. duplication between different files.

| 100%
to
3

0)O)TO
C
<DOi_O)a

80% -o<b
| 60% o

40% -

2 0 % -

0%

I
58

□ m u l t i - f i le

■ b e t w e e n t w o f i l e s

□ w i t h i n t h e s a m e f il e

o r i g i n a l p a r s e d l p a r s e d 2

Figure 6.4: File span distribution o f clone clusters.

File clusters reflect system partitioning based on dependencies resulting from cloning.

Complex file clusters (including pairs) indicate som e degree o f functional coupling

between files. Singletons, on the other hand, do not imply inter-file coupling. Exact

clones appeared to increase coupling as they partitioned the target Mozilla system

predominantly into two-file clusters or pairs (Figure 6.5) with a substantial amount o f

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

complex multi-file aggregates and singletons (i.e., single file). N ear clones, on the other

hand, tended to cause less interdependency between files as they mainly produced

independent singletons. However, distributions for ‘p a rsed l’ and ‘parsed2’shown in

Figure 6.5 may have been skewed due to the loss o f information on certain exact clones

(see discussion above).

e0)

o
0)
* -
o<D O)0}+->
c o ol_to
CL

o r i g i n a l p a r s e d l p a r s e d 2

Figure 6.5: Distribution o f file clusters by size (i.e., file count).

Another noteworthy characteristic o f code duplication in the M ozilla system was that,

overall, the majority o f file clusters (over 75 %) were fonned within a single directory.

The rest had quite a narrow directory span o f 2, and never more than 3. This can be

explained with organization o f M ozilla’s source tree: Code delivering similar

functionality and/or fulfilling common purpose is stored together. However, there are

also platfonn dependent subdirectories that contain platfonn specific code.

Studying file clusters identified in ‘parsed2’ revealed at least one case o f code sharing

between different modules. A three-file cluster linked together three different

100% -r

□ c o m p l e x

■ p a i r

□ s i n g l e t o n

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

components through one two-way exact match and two two-way near matches o f

function fragments.

6.5 Nature o f Clones and Their Occurrences

Clones are perfect candidates for restructuring that could transform the ad hoc reuse they

represent into more disciplined types o f reuse. By replacing a clone with a new

subroutine or method the duplication can be eliminated, and this may lead to greater

maintainability. One o f the goals o f this evaluation was to analyze detected clones for

the purpose o f understanding their nature and occurrences, so as to help develop

efficient strategies for their removal (i.e., replacing with a single code entity). Some

observations are summarized in Table 6.3.

Clone Type M atch
Type

Duplication Context Possible Restructuring
M easures

1 Full/partial class
declaration
or/and
implementation

exact,
near

■ Classes representing
close/identical concepts (i.e.,
IOFileStream, InputFileStream)

■ Classes representing symmetrical
concepts (i.e., input/output,
compress/decompress)

■ Classes implementing same
functionality on different platforms
(i.e., platform specific data types,
API calls)

■ Classes operating on different
objects/data types (i.e., single-byte
char/wide char, handling different
image formats, compression
algorithms)

■ Classes representing unrelated
concepts but sharing some code

• Use o f inheritance
(i.e., extract a
superclass)

■ Use o f <Template>
classes

■ Factor common code
out into a set o f
helper functions or a
helper class

■ Add cross-
reference22

2 Function
(complete)

exact ■ Platform specific implementations
■ Implementation o f similar

■ Create new function
FX and change

22 There existed cases where a pointer to the original was added via a comment. However, this was rather
an exception than a rule and was done in undisciplined manner.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Clone Type M atch
Tvpe

Duplication Context Possible Restructuring
M easures

F 1,F 2, . . . , FN concepts (i.e., handling different
image formats)

■ Interface implementation (i.e.,
IRender, IRenderl)

F 1,...,F N to call it
■ Change all calls to

F2,...,F N into calls
to F 1 and remove
F2,...,FN

■ Add cross-reference
3 Function

(complete)
■ Differ in

return type
• Differ in

data type(s)

near ■ Platform specific implementations
■ Implementation o f similar

concepts (i.e., handling different
image formats, array types)

■ Interface implementations (i.e.,
IRender, IRenderl)

■ Extract common
code into a function
FX; Use
parameterization
(add arguments,
‘type d e f return
type, etc.) or
template function.
Change cloned code
to calls to FX

■ Add cross-reference
4 Function

(fragment)
■ same method
■ different

methods
(same file,
different
files)

exact,
near

■ Implementation o f similar
functionality

■ Extract shared code
into a separate
method FX;
Parameterize if
necessary. Change
cloned code to calls
to FX

■ Add cross-reference
5 Fragments o f

embedded
assembler code

exact ■ Image handling ■ Add cross-reference
■ Encapsulate in a

function
6 Entire file

containing
declaration
and/or
implementation
o f certain
classes/interfaces

exact ■ Duplicated between different files
in the same directory

■ Files with same name and identical
contents located in different
directories

■ Add cross-reference
■ May have to do with

build configurations
or other aspects o f
configuration
management

T able 6.3 : Classification o f typical duplication patterns with possible restructuring solutions.

Occasionally, potential clone removal solutions were obvious without having to fully

understand the semantics o f the code (i.e., example given in section 6.6). Overall,

devising restructuring solutions was hampered by the following factors:

■ The rationale behind cloning was not exactly clear;

■ The code structure was difficult to understand;

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Removing clones could cause a ripple effect through related code [Fanta 1999] that

was difficult to assess;

■ Manual analysis was cumbersome.

6.6 Clone Analysis with CloneMaster

This section describes one clone exploration scenario using the CloneMaster visual tool.

Its purpose is to verify the potential merit o f clone identification in achieving better

quality software as well as to demonstrate usefulness o f the tool. ‘Parsed2’ system was

chosen as a target system because it contained the most interesting matches. No prior

knowledge about duplication or the Mozilla system itself was assumed. W e decided to

start with researching matches contained within the same file and having just two

instances.

■ Step 1: Loaded ‘parsed2’ system into CloneMaster GUI.

■ Step 2: Used ‘Queries’—> ‘Clone cluster instance based query’ —> ‘File span range

search’ menu option to search for all clone clusters with file span o f 1 (i.e., all clones

reside in the same file).

■ Step 3: In the query results pane, focused on clusters o f size 2. Found cluster

CLR 252.

■ Step 4: From the query results pane, navigated to CLR_252 location in the clone

cluster-based tree to identify the two clones o f interest.

■ Step 5: Studied the source code o f both clones (Figure C.4 and C.5).

125

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Step 6: Located the file containing the clones in the file-based tree to identify other

three pairs o f clones it contained to better understand the context o f cloning.

■ Step 7: Located the corresponding file cluster in the file cluster-based tree to

determine that the parent file did not share any matches with other files.

■ Step 8: As a result o f Steps 5-7, it became apparent that the two clones were actually

made o f 4 methods that closely resembled each other. These methods performed

some kind o f an object retrieval action using same local variables and same

parameters. The only differences were in the names o f the methods itself, the names

o f the object to be retrieved, and the path to that object (Figure C.4 and C.5). Both

object names and paths were just strings.

■ Step 9: Analysis o f Step 8 led to a conclusion that such cloned methods could be

eliminated by creating a new helper method ‘ getObject’ that, in addition to the

original arguments, would also accept two new string arguments (i.e., ‘object_nam e’

and ‘object_path’) and encapsulate parameterized functionality o f the four original

methods (Figure C.8).

■ Step 10: The bodies o f the 4 cloned methods were replaced with the calls to the new

‘_getObject()’ method with appropriate parameters (Figure C.9). This change should

not have caused any ripple effect since it was very localized and disconnected from

the rest o f the system.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. 7 Conclusions

The Mozilla case study described in this chapter demonstrated how the clone analysis

process developed throughout this thesis can be successfully applied to a large-scale

commercial system to improve the system ’s internal structure, and, thus, such

fundamental software characteristics as changeability and maintainability.

High degrees (up to 10%) o f duplication identified in the experiment provided an

excellent opportunity to validate the benefits o f applying the integrated clone analysis

process. These benefits ranged from reliable clone detection to identifying opportunities

for improved architectures. Integrating the three separate stages o f clone analysis (i.e.,

clone identification, clone data presentation and clone data interpretation) into one

process allowed information obtained during the clone identification stage to be

successfully leveraged on later stages o f analysis (i.e., clone data interpretation and

restructuring) and to enable the user to closely control each stage as well as the

information flow between different stages. Analysis o f the results o f clone identification

in ‘original’, ‘p a rsed l’, and ‘parsed2’ led to the following conclusions:

■ Significant fraction o f duplication is near clones;

■ Ability to identify near clones is important since they are good targets for

restructuring;

* The pre-processing technique developed in Chapter 4 to extend the capabilities o f

SelArt to support near clones adequately fulfilled its purpose and proved to be very

reliable. The higher degree o f pre-processing was applied, the more near clones were

uncovered;

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ The effectiveness o f pre-processing should not be evaluated by the number o f clones

found. Pre-processing and clone matching are effected by both, the context and the

conditions o f experiment (i.e., Selart parameters, noise threshold);

■ Pre-processing preserves exact clones. However, aggressive filtering o f the source

could cause some exact matches to be lost due to a bug in SelArt. Thus, exact

matching must always complement partial matching to ensure against clone

information loss.

■ It was not possible to evaluate scalability o f the approach based on just this case

study. However, the example tested was substantial and represented the size o f many

commercial applications.

The case study also provided a good opportunity to evaluate the applicability and

usefulness o f the visual clone management tool described in Chapter 5:

■ CloneMaster proved to be functional and helpful as a visual clone exploration

browser in terms o f analyzing clone distribution in the system and supporting

decision making. Before CloneMaster was developed, all attempts o f manual clone

analysis undertaken by the author always failed due to the overwhelming nature and

amount o f clone data;

■ The most beneficial features o f CloneMaster discovered through the evaluation were

the ability to trace different occurrences o f clones based on different criteria, the

ability to identify clone incurred dependencies, and to see how the system was

composed o f clones.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ M ultiple concurrent views complemented by straightforward and easy navigation

between them allowed the flow o f analysis to effortlessly maneuver from one view to

the other taking advantage o f each view ’s offering. Such interconnectedness o f the

views facilitated different exploration scenarios depending on the context and user

preference;

■ Easy access on demand to auxiliary data such as different statistics, dynamic queries,

and especially source code browsing proved to add value to the analysis process

without overcrowding the visual display;

■ CloneMaster showed adequate scalability in terms o f the size o f the source code

itself and the amount o f duplication identified. However, after a certain number o f

open windows was accumulated, navigation between them could become confusing;

■ Performing cross-system analysis showed to be tedious, time consuming and error

prone. Thus, a better mechanism to fulfill this requirement is needed;

■ Since no information on degree o f similarity between clones is available, it has to be

determined manually through visual cross-inspection o f the corresponding sources, -

a very time consuming and error prone operation.

The results discussed in this chapter suggested that the proposed clone analysis process

is a viable practical solution to the problem o f code cloning that, i f not addressed, can

cause maintenance nightmares. It was shown that clones o f different kinds, both exact

and near, could be easily and reliably identified even in large bodies o f source code.

Visual presentation o f clone data, capitalizing on human abilities to rapidly assimilate

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and interpret visual information, allowed this clone information to be used efficiently in

practical software engineering and maintenance tasks (i.e., restructuring).

The study also helped to identify areas for improvement. Support for the cross-system

comparison and the mechanism for discovering differences between clone instances are

the most prominent ones. Other areas to be addressed are outlined in Chapter 7.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7 - Conclusions and Future Work

This chapter delivers some concluding remarks as it revisits the contributions o f this

thesis and outlines the potential for future work.

Code cloning complicates maintenance and hampers evolution o f large software systems

as it degrades their design and structure. Systematic management o f software clones has

the potential to translate into significant budget savings. Identification o f software clones

followed by their analysis could often suggest ways to improve internal structure o f

source code and to clarify its meaning. Although various aspects o f clone management

have been addressed by academic research, practical application has been hampered by

the lack o f adequate tools and processes.

A comprehensive process for analyzing software clones in large bodies o f source code

has been defined, implemented and tested. The approach successfully integrated the

traditionally disjointed domains o f clone identification and clone-based restructuring.

This integration provides software practitioners with a complete set o f practical tools

that enable them to detect, analyze, categorize and remove duplication.

A major problem with text matching for identification o f software clones is that it fails

to find clones when minor changes, such as renamed variables or altered comments,

have been made. This deficiency o f the text-based comparison clone identification

technique to detect near clones has been limiting its practical application. A simple,

effective and reliable solution to this problem has been developed. The solution is based

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

on a concept o f pre-processing during which the source code is transformed into some

intermediate format designed to preserve clone information but eliminate irrelevant

detail. Integration with one particular implementation o f the text-based comparison

technique, a tool called SelArt, was a success and demonstrated the validity and benefits

o f the approach. Application o f the solution to an industrial software system uncovered a

large amount o f meaningful near clones that would have been missed by a more

traditional approach.

A prototype clone management tool, CloneMaster has been designed and implemented.

CloneMaster is an interactive visual clone exploration environment that empowers

software practitioners with powerful yet intuitive means to view, analyze and manage

information on clones and their distribution within the system. The tool analyzes

detected clones, clusters them and presents them to the user in a systematic manner.

Graphical presentation allows the user to see the global impact o f duplication as well as

to study each particular clone. Application o f CloneMaster in the M ozilla case study

showed several benefits and verified CloneM aster’s capability to support consistent

maintenance and clone-based restructuring.

The Mozilla source code represents an industrial scale body o f software written in C++.

This was analyzed to evaluate the clone analysis process in the context o f software

engineering and maintenance. Based on visual analysis (i.e., CloneMaster) o f discovered

duplications, some concrete possibilities for restructuring were identified. These

represented places where clones could be removed or links between them added. On one

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

hand, the case study showed the unrealized potential o f the clone analysis process to

provide software professionals with opportunities to significantly improve quality o f

software systems. On the other hand, it validated such advantages o f our approach as

the ability to detect near clones, visualization-based approach to management o f clone

data, and supporting all stages o f clone analysis to give the user ultimate control.

One potential limitation o f our approach is that it is based on human interaction. The

balance between automation o f and human involvement in the process o f clone-based

analysis and re-engineering is skewed to the side o f the human. Human involvement is

costly, slow, and error prone, especially in larger projects. Although human involvement

in clone-based re-engineering is inevitable due to the complexity o f the task, the degree

o f this involvement should be as little as possible.

CloneMaster, through source code viewing, helps the user to evaluate possibilities for

clone-based restructuring. However, it does not provide enough support for the

restructuring operation itself. Other specialized tools that support restructuring (i.e.,

usually represent program structure via program entities and relationships between these

entities) can be investigated and integrated with CloneMaster.

It is currently not possible to compute any measure o f degree o f similarity between

matches (clones); however, such information could be extremely valuable. This

limitation stems from the underlying clone identification method. It would be interesting

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to investigate possibilities o f delivering this functionality (i.e., in a form o f a post

processing add on).

There is a need to implement a mechanism for cross-clone source code comparison to

automatically identify and highlight differences between them. Currently, this is a

manual task that proved to be time consuming and error prone.

Future development o f the CloneMaster tool might benefit from the use o f color coding.

For example, using color coding to discriminate between exact and near clones, to

portray distance between different clone instances, or any other attributes (clone size,

file size, cluster size, file span, etc.) could convey a lot o f additional information to the

user or allow him to see patterns. An industrial-strength version o f this tool could offer a

mechanism for the user to control the color scheme used for color coding and labeling to

accommodate user preferences or limitations (i.e., color-blindness).

In its current form, CloneMaster is not fully optimized for performance. Possible

adjustments to improve responsiveness o f the system include database access

optimization (indexing, denormalization, query refinement), cashing, and algorithm

optimization.

The current implementation o f the clone analysis process consists o f multiple separate

operations, or steps, performed in predefined order. It makes good sense to integrate

these individual steps into one automated process.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although the described clone analysis process is in its prototype stages, it shows the

potential for developing into an effective clone management solution to support software

engineering and maintenance.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

References

[Aho 1986] Aho, A., Sethi, R., Ullman, J., Compilers Principles, Technoques, and
Tools, Addison-W esley Pub. Co., 1986.

[ANSI 1983] An American National Standard IEEE Standard Glossary o f Software
Engineering Terminology, ANSI/IEEE Standard 729, 1983.

[Baecker 1981] Baecker, R., Sherman, D., Sorting Out Sorting, 16 mm color sound film,
1981, Shown at S1GGRAPH'81, Dallas, TX.

[Baeker 1998] Baecker, R., Price, B., The History o f Software Visualization, Software
Visualization, MIT Press, Cambridge, M assachusetts, 1998, pp. 29-34.

[Baker 1992] Baker, S., A Program for Identifying Duplicated Code, Proceedings o f
Computing Science and Statistics: 24th Symposium on the Interface, 1992, pp. 49-57.

[Balazinska 1999] Balazinska, M., Merlo, E., Dagenais, M., Lague, B., Kontogiannis,
K., Measuring Clone Based Reengineering opportunities, Proceedings o f the 6th IEEE
International Symposium on Software Metrics, Florida, Nov. 1999, pp. 292-303.

[Ball 1996] Ball, T., Eick, S., Software Visualization in the Large, IEEE Computer, Vol.
29(4), April 1996, pp. 33-43.

[Barson 1995] Barson, P., Davey, N., Field, S., Frank, R.,Tansley, D., Dynamic
Competitive Learning Applied to the Clone Detection Problem, Proceedings o f
International Workshop on Applications o f Neural Networks to Telecommunications 2,
1995, pp.234-241.

[Baxter 1998] Baxter, I., Yahin, A., Moura, L., Sant’Anna, M., Bier, L., Clone Detection
Using Abstract Syntax Trees, Proceedings o f ICSM ’98, November 16-19, 1998,
Bethesda (Mayland).

[Baxter 2002] Baxter, I., Churchett, D., Using Clone Detection to Manage a Product
Line, 7,h International Conference on Software Reuse, April 15, 2002, Texas.

[Boehm 1981] Boehm, B., Software Engineering Economics, Prentice-Hall, 1981.
[Card 1999] Card, S., Mackinlay, J., Shneiderman, B., Readings in Information
Visualization: Using Vision to Think, Morgan Kaufmann Publishers, San Francisco,
California, 1999.

[Chikofsky 1988] Chikofsky, E., Rubenstein, B., CASE: Reliability Engineering for
Information Systems, IEEE Software, Vol. 5(3), 1988, pp. 11-16.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[Chikofsky 1990] Chikofsky, E., Cross, J., Reverse Engineering and Design Recovery:
A Taxonomy, IEEE Software, Vol. 7(1), 1990, pp. 13 -17 .

[Dagenais 1998] Dagenais, M., Merlo, E., Lague, B., Proulx, D., Clones Occurrence in
Large Object Oriented Software Packages, Proceedings o f IBM CAS Conference
(CASCON'98), Toronto, November 30 - December 3, 1998, pp. 192-200.

[DeDourek 1980]DeDourek, G., Gujar, U., McIntyre, M., Scanner Design, Software -
Practice and Experience, Vol. 10, 1980, pp.959-972.

[Domingue 1992] Domingue, J., Price, B., Eisenstadt, M., A Framework for Describing
and Implementing Software Visualization Systems, Proceedings o f Graphics
Interface’92, Vancouver, Canada, M ay 1992, pp.53-60.

[Ducasse 1999] Ducasse, S., Rieger, M., Demeyer, S., A Language Independent
Approach for Detecting Duplicated Code, Proceedings o f the 1999 International
Conference on Software Maintenance, IEEE Computer Society Press, September, 1999,
pp. 109-119.

[Eick 1992]Eick, S., Steffen, J., Sumner, E., SeeSoft - A Tool For Visualizing Line
Oriented Software Statistics, IEEE Transactions on Software Engineering, Vol. 18(11),
November 1992, pp.957-968.

[Eick 1995] Eick, S., Engineering Perceptually Effective Visualizations for Abstract
Data, AT&T Bell Laboratories, April 1995.

[Eick 1998] Eick, S., Maintenance o f Large Systems, Software Visualization, MIT Press,
Cambridge, Massachusetts, 1998, pp. 315-328.

[Ellis 1990] Ellis, M., Stroustrap, B., The Annotated C + + Reference Manual, Addison-
W esleyPub. Co., 1990.

[Fanta 1999] Fanta, R., Rajlich, V., Removing Clones from the Code, Journal o f
Softw’are Maintenance, 1999, pp. 223-243.

[Fowler 1999] Fowler, M., Refactoring: Improving the Design o f Existing Code,
Addison W esley Professional, MA, 1999.

[Gcc] Official GNU GCC W ebsite, Available via http://gcc.gnu.org/.
[Hamming 1973] Hamming, R., Numerical Analysis fo r Scientists and Engineers,
McGraw-Hill, New York, 1973.

[Jankowitz 1988] Jankowitz, H., Detecting Plagiarism in Student PASCAL Programs,
Computer Journal, 31 (1), 1988, pp. 1 -8.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://gcc.gnu.org/

www.manaraa.com

[Johnson 1993] Johnson, H., Identifying Redundancy in Source Code using Fingerprints,
Proceedings o f IBM CAS Conference (CASCON’93), Toronto, October 24 - 28, 1993,
pp. 171-181.

[Johnson 1994a] Johnson, H., Visualizing Textual Redundancy in Legacy Source,
Proceedings o f IBM CAS Conference (CASCON’94), Toronto, October 31- November 3,
1994, pp. 9-18.

[Johnson 1994b] Johnson, H., Substring Matching for Clone Detection and Change
Tracking, Proceedings o f the 1994 International Conference on Software Maintenance,
September 19-23, 1994.

[Johnson 1995] Johnson, H., Using Textual Redundancy to Understand Change,
Proceedings o f IBM CAS Conference (CASCON’95), Toronto, November 7 - 9, 1995,
(CD-ROM).

[Johnson 1996] Johnson, H., Navigating the Textual Redundancy Web in Legacy
Source, Proceedings o f IBM CAS Conference (CASCON’96), Toronto, November 12 -
14, 1996, pp. 7-17.

[Kane 1997] Kane, D., Opdyke, W., Dikel, D., M anaging Change to Reusable Software,
Proceedings o f the 4th Pattern Languages o f Programs Conference, Illinois, USA,
September 3-5, 1997.

[Karp 1987] Karp, R., Rabin, M., Efficient Randomized Pattern-Matching Algorithms,
IBM J. Res. Develop. 31(2), March 1987, pp.249-260.

[Kataoka 2001] Kataoka, Y., Ernst, M., Griswold, W., Notkin, D., Automated Support
for Program Refactoring using Invariants, Proceedings o f the 2001 International
Conference on Software Maintenance, Italy, November 6-10, 2001, pp. 736-743.

[Kontogiannis 1996] Kontogiannis, K., Demori, R., Merlo, E., Galler, M., Bernstein, M.,
Pattern M atching for Clone Detection, Automated Software Engineering, 3, 1996, pp.77-
108.

[Lague 1997] Lague, B., Proulx, D., Mayrand, J., Merlo, E., Hudepohl, J., Assessing the
Benefits o f Incorporating Function Clone Detection in a Development Process,
International Conference on Software Maintenance, 1997, IEEE, pp. 314-321.

[Linos 1994] Linos, P., Aubet, P., Dumas, L., Helleboid, Y., Lejeune, P., Tulula, P.,
Visualizing Program Dependencies: An Experimental Study, Software - Practice and
Experience, Vol. 24(4), pp.387-403, April 1994.

[Martin 2000] Martin, J., Wong, K., Winter, B., Muller, H., Analyzing xfig Using the
Rigi Tool Suite, Proceedings o f the Working Conference on Reverse Engineering,
Brisbane, Australia, November 23-25, 2000.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

[Mayrand 1996] Mayrand, J., Leblanc, C., Merlo, E., Experiment on the Automatic
Detection o f Function Clones in a Software System Using Metrics, Proceedings o f the
International Conference on Software Maintenance, Monterey, California, USA,
November 4-8, 1996, pp. 244-253.

[Mayrhauser 1995] Von Mayrhauser, A., Vans, A., Program Comprehension during
Software M aintenance and Evolution, IEEE Computer, pp. 44-55, August, 1995.

[MSDN 2000] Microsoft Developer Network Libraiy, October 2000.

[McCabe 1990] McCabe, T., Reverse Engineering, Reusability, Redundancy: the
Connection, American Programmer, October 1990, pp.8-13.

[McCabe 1992] McCabe, T., W illiamson, E., An Engineering Approach to Software
Maintenance, CASE OUTLOOK, Vol. 6(1), 1992, pp. 19-21.

[McCabe 1999] McCabe & Associates Inc. Official Web Site, Available via
http://www.mccabe.com.

[Monden 2002] Monden, A., Nakae, D., Kamiya, T., Sato, S., Matsumoto, K., Software
Quality Analysis by Code Clones in Industrial Legacy Software, 8th IEEE Symposium on
Software Metrics, Ottawa, Canada, June 4-7, 2002, pp. 87-94.

[Muthukumarasamy 1995] Muthukumarasamy, J., Stasko, J., Visualizing Program
Executions on Large Data Sets Using Semantic Zooming”, GVU Center, College o f
Computing, Georgia Institute o f Technology, Technical Report GIT-GVU-95-02, 1995.

[Parker 1998] Parker, G., Franck, G., Ware, C., Visualization o f Large Nested Graphs in
3D: Navigation and Interaction, Journal o f Visual Languages and Computing, No. 9,
1998, pp. 299-317.

[Price 1993] Price, B., Baecker, R., Small, I., A Principled Taxonomy o f Software
Visualization, Journal o f Visual Languages and Computing, Vol. 4(3), September 1993,
pp. 211-266.

[Rigi 1999] Official Rigi Web Site, Available via http://www.rigi.csc.uvic.ca/rigi.

[Storey 1997] Storey, M., Fracchia, F., Muller, H., Cognitive Design Elements to
Support the Construction o f a Mental Model during Software Visualization, Proceedings
o f the Fifth International Workshop on Program Comprehension (IW PC-97), IEEE
Computer Society Press, Dearborn, Michigan, May 28-30, 1997, pp. 17-28.

[Storey 1998] Storey, M., Muller, H., Wong, K., Manipulating and Documenting
Software Structures, Software Visualization, P. Eades and K. Zhang (eds.), World
Scientific Publishing Co., in press. ISBN 981-02-2826-0, Available via
http://tara.uvic.ca/rigi/ref.html.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.mccabe.com
http://www.rigi.csc.uvic.ca/rigi
http://tara.uvic.ca/rigi/ref.html

www.manaraa.com

[Storey 2000] Storey, M., Wong, K., Muller, H., How Do Program Understanding Tools
affect How Programmers Understand Programs?, Journal o f Science o f Computer
Programming, Vol. 36, pp. 183-207, March 2000.

[Tilley 1996] Tilley, S., Paul, S., Smith, D., Towards a Framework for Program
Understanding, Proceedings o f the 4th Workshop on Program Comprehension, Berlin,
Germany, March 23-31, 1996, pp. 19-28.

[Ware 1988] Ware, C., Using color Dimensions to Display Data Dimensions, Human
Factors, 30(2), 1988, pp. 127-142.

[Ware 1993] Ware, C., Hui, D., Franck, Glenn, Visualizing Object Oriented Software in
Three Dimensions, Proceedings o f IBM CAS Conference (CASCON'93), Toronto,
October 24-28, 1993, pp. 612-620.

[Ware 1994] Ware, C., Franck, G., Visualizing Information Nets in Three Dimensions,
University> o f New Brunswick Technical Report TR94-082, February 1994.

[Ware 1999] Ware, C., Information visualization: Perception fo r Design, Morgan
Kaufman Publishers, 1999.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A - Parser Design

Token
Code Token Type Token Description

1 identifier user defined identifier

2 keyword a C/C++ keyword or identifier that has special meaning
(main, argc, argv, NULL, EOF)

3
library routine
name identifier defined in a standard library file

4 decimal constant decimal integer
5 real number floating point number
6 inline comment from // to end-of-line or EOF
7 C-style comment / * * /

8
preprocessor
directive from # to end-of-line, EOF, 7* ’, or 7 /’

9 blank one or more space, tab, or new line char
10 string literal 99

11 character constant ‘A ’ or ‘\n’
13 [left bracket
14] right bracket
15 (left parenthesis
16) right parenthesis
17 & unary address operator
18 * binary multiplication or unary indirection operator
19 + binary addition or unary plus
20 - binary subtraction operator or unary minus
21 ~ bitwise complement (1 ’ s)
22 i unary logical negation
23 % remainder
24 < less than
25 > greater then
26 | bitwise OR
27 A bitwise XOR
28 5 comma separator
29 ? ‘a ? x : y ’ = “if a then x, else y”
30 J semicolon separator
31 ‘a ? x : y ’ = “if a then x, else y”
32 { left brace
33 } right brace
34 direct component selector
35 = assignment operator
36 / divide
37 * pointer to member operator
38 indirect component selector
39 ++ pre/post increment

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Token
Code Token Type Token Description

40 — pre/post decrement
41 « bitwise shift left or insertion operator (C++)
42 » bitwise shift right or extraction operator (C++)
43 <= less than or equal to
44 >= greater than or equal to
45 == equality operator
46 t= not equal
47 && logical-AND operator
48 || logical-OR operator
49 *= multiplication assignment
50 /= division assignment
51 %= remainder assignment
52 += addition assignment
53 . = subtraction assignment
54 &= bitwise AND assignment
55 A — bitwise exclusive OR assignment
56 |= bitwise inclusive OR assignment

57

#if 0 block

a block of code commented out using conditional
compilation:
if0
statement 1

statementN
#endif

58 scope resolution operator
59 -»* pointer to member operator
60 « = left shift assignment
61 » = Right shift assignment
62 ellipsis

63
octal/hexadecimal
constant octal or hexadecimal integer

64 EOF end-of-file character
65 error unrecognized unit

66 escape control sequence (backspace, bell, etc.) excluding what
makes up token 9

69
continuation
sequence back slash followed by new line

Table A .l: Selected Tokens

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Token type Token
Code Definition

identifier
1 nondigit (nondigit | digit)*

nondigit —» [a-zA-Z_$]
digit —> [0-91

keyword

2 {asm, asm ,__asm__, auto, break, case, catch, _cdecl,
_ cd ec l, cdecl, char, class, const, continue, _cs, default,
delete, do, double, _ds, else, enum, _es, _export, explicit,
extern, _far, fae, float, for, friend, goto, huge, if, inline,
int, interrupt, loads, long, _near, near, new, operator,
_pascal, pascal, private, protected, public, register, return,

saveregs, seg, short, signed, sizeof, _ss, static, struct,
switch, template, this, typedef, union, unsigned, virtual,
void, volatile, while, try, throw, typeof, const_cast,
static_cast, dynamic_cast, reinterpret_cast, NULL, EOF,
main, argc, argv)

library routine
name

3 identifier defined in included (standard) library file

decimal constant

4 [digitA0](digit)*(suffix)
digit —> [0-9]
suffix —> (suffix 1 | suffix2)
suffix 1 —> (u | U)?(l | L)?
suffix2 -> (1 | L)?(u | U)7

real number

5
') *)

fractional_const(exponent_part) (suffix)
(digit)+ exponent_part(suffix)'
digit —» [0-9]
fractional const —> (frl | fr2)
frl -» (digit)+.(digit)*
fr2 -> ,(digit)+

exponent_part —> (e | E)(+ -)(digit)+
suffix —> (11 L | f | F)

inline comment 6 starts with 7 /’ and terminates with end of line or EOF
C-style comment 7 starts with 7 * ’ and terminates with ‘*/’; doesn’t nest

preprocessor
directive

8 starts with ‘# ’ and terminates with end of line, EOF, 7* ’
or 7 /’, excluding cases that can be identified under token
57

blank
9 space(space)*

space —» (sp(32) | nl(10) | ht(9) | vt(l 1) | ff(12) | cr(13)

string literal 10 sequence (any length) of any characters surrounded by
double quotes

character constant 11 one or more characters enclosed in single quotes
[13 ([)
1 14 (])
(15 (()
) 16 ())
& 17 (&)
* 18 (*)

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Token type Token
Code Definition

+ 19 (+)

- 20 (-)

21 (~)

! 22 (!)

% 23 (%)

< 24 (<)

> 25 (>)

| 26 (1)
A 27 (A)

5 28 (,)

? 29 (?)

> 30 (;)

31 (:)

{ 32 ({)

33 (})

34 (•)

= 35 (=)

/ 36 (/)

* 37 (*)

38 (- >)

+ + 39 (+ +)

~ 40 (-)

« 41 («)

» 42 (»)

<= 43 (< =)

> = 44 (> =)

== 45 (= =)

i = 46 (! =)

& & 47 (& &)

| | 48 (II)
* = 49 (* =)

/ = 50 (/ =)

% = 51 (% =)

+ = 52 (+ =)

.= 53 (- =)

& = 54 (& =)

a = 55 (A =)

1= 56 (1 =)

#if 0 block 57 Starting with ‘#if 0’ and terminating with ‘#endif’wirh
possible nesting of # if ... #endif blocks

58 (: :)

- > * 59 (- > *)

« = 60 (« = =)

» = 61 (» = =)

62 (. . .)

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Token type
Token
Code Definition

octal/hexadecimal
constant

63 octal constant: O(octal_digit)*(suffix)
octal digit -» [0-7]
hexadecimal constant: 0(x | X)(hex_digit)*(suffix)
hex_digit —» [0-9a-fA-F]
suffix -» (suffix 1 | suffix2)
suffix 1 —> (u | U)?(l | L)?;
suffix2 -> (11 L)?(u | U)?

EOF 64 EOF char
error 65 any unrecognizable sequence of chars

escape
66 esc_char(esc_char) *

esc char —» (bs(8) | bel(7) | etc)
continuation
sequence

69 \nl (back slash followed by new line)

T able A.2 Token definition

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Charact
er
Class

Character Class
Name

Characters

0 LETa A | a
1 LETb B | b
2 LETc C |c
3 LETd D | d
4 LETe E | e
5 LETf F | f
6 LETu U | u
7 LET1 L 11
8 LETx X |x
9 LET [A - Za - zALETaLETbLETcLETdLETeLETuLETlLETxl
10 ODIGIT [1-71
11 RDIGIT 8 | 9
12 MINUS -

13 PLUS 4*
14 EQU =
15 TLDA
16 EXL !
17 OTHER @ r
18 PS #
19 PERC %
20 CAP A

21 AMPS &
22 STR *
23 LPER (
24 RPER)
25 UNDSC
26 LBR [
27 RBR]
28 BSLASH \
29 LBRC {
30 RBRC I
31 OR |
32 SEMC
33 FSL /
34 COLON
35 DO
36 COMMA
37 DOT
38 SQ ‘
39 LTHEN <
40 GTHEN >
41 QM ?
42 NLINE nl (ASCII code 10)
43 WHITESPACE ht(9) |ff(12)|cr(13)| v t(ll)

44 ESCAPES bel(7) | bs(8) |iscontrol() but !isspace()}

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Cliaract
er
Class

Character Class
Name

Characters

45 BLANK sp(32)
46 ZERO 0
47 EOF eof char
48 $ $

Table A.3 Selected Character Classes

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix B - CloneMaster Data Model

CloneMaster Data Model

SystemsToRules

PK.FK3
PK.FK2

system _id
rule id

files

PK file id

file_path
depth
size

1

%

X >

rules

PK rule id

rule_num ber
rule_description

clones

PK clone id

FK1

starting_position
ending_position
f i le jd
length

systems

PK s y s te m jd

nam e
prep_flag
threshold
S elA rtJ
comment

hlf • -Q f

temp_systems

PK id

FK1 s y s te m jd
root_path

-1+

<x

1
FilesToSystems

PK.FK2
PK,FK1

file id
s y s te m jd

ClonesToClusters

PK,FK1
PK.FK2

clone id
cluster id * >

2_
clusters

PK cluster id

FK1
hash_value
s y s te m jd
cluste r _nam e

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Data Descriptions

SYSTEMS table
This table stores information on system entities.

system jd : (PK, Identity) smallint - Mandatory unique identifier o f a system
name: varchar(256) - Mandatory unique name o f a

system
p rep J la g : char(1) - Mandatory flag indicating whether or

not the system underwent preprocessing {Y, N}
threshold: tinyint - M andatory noise threshold (number o f

lines).
SelA rtJ: smallint - Mandatory target clone size (minimum

requested clone size)
Comment: varchar(1024) - free form comment; Optional

FILES table
Stores information on file entities,

file id: (PK, Identity)
file_path:

depth:

size:

int - Mandatory unique file identifier
varchar(900) - M andatory unique path to the file
relative to IN P U T D IR
smallint - Mandatory number o f directories in the
path
int - Size o f file in bytes; Optional

FILESTOSYSTEM S table
Information on file-system association.

f ile jd : (PK, FK) int - Mandatory file identifier
system jd : (PK, FK) int - Mandatory system identifier

CLONES table
Stores information about clone entities.

c lo n e jd : (PK, Identity) int - Mandatory unique clone identifier
starting position: int - Mandatory starting line o f the clone
ending-position: int - M andatory ending line o f the clone
file id: int - Mandatory file the clone resides in
length: int - Mandatory length o f the clone in number o f

lines

CLUSTERS table
Stores information on cluster entities.

cluster id: (PK, Identity) int - Mandatory unique cluster identifier
hash_value: int - M andatory Unique hash value
cluster_name: varchar(50) - M andatory symbolic name to serve

as cluster identifier for presentation purposes

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

system_id: (FK) smallint - Mandatory identifier o f the
corresponding system, Unique

Note: combination o f ‘hash_value’ and ‘system id ’ uniquely identify a cluster

CLONESTOCLUSTERS table
Information about clone-cluster association.

clone_id: (PK, FK) int - Mandatory clone identifier
clustered: (PK, FK) int - Mandatory cluster identifier

RULES table
Stores information on pre-processing rules.

rule_id: (PK, Identity) sm allint- Mandatory unique rule identifier
rule_number: tinyint - M andatory unique rule number
rule_description: varchar(1024) - M andatory rule description

SYSTEM STORULES table
Provides information on pre-processing rules associated with system

system_id: (PK, F K) smallint - Mandatory system identifier
rule_id: (PK, FK) smallint - Mandatory rule identifier

TEMP SYSTEMS table
This dynamic table maintains records on systems currently loaded into visualization
tool.

id: (PK, Identity) smallint - Mandatory unique identifier
system_id: (FK) smallint - Mandatory identifier o f loaded system
root_path: varchar(900) - Mandatory unique absolute path to

the directory where the source code for the loaded
system is located

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C - Experimental Results

H, stripped_20_2Cfctl:\TestSyst<-m nm.’ilki inurfuiesv ■ Inl x|
i f n d e £

f l f d e f m e UNABLE TO CONV ERT

/ * XX XM12N •*/
- 2 0 8

H c le f m e MK__ UN AB L E _ T0__ L DC I N - 2 1 0

^ d e f i n e HK-NO NEWS S E R V E R - 2 2 4

d e f i n e HK~"u s e f t p i n s t e a d - 2 2 5

c l e £ i n © MK~~USE_C OP Y_FROH__C AC HE - 2 2 6

d e £ i n e h k ~JE HP TY _ N E WS_L l 5 x 2 2 7

d e f i n e A I L T 0 _ N 0 T _ R E APT - 2 2 6

^ d e f i n e HK__Q 8 J E C T__NGT_ XN__C AC HE - 2 3 9

d e f i n e MX UNABLE T O L I S T E N ON S O C K E T 2 4 4

^ d e f i n e n K_ W A I T I N G FO R LOOKUP - 2 4 8 / * r e s p o n s e f o r a s y n c d n s * /

d e f m e HK~“d o _ r e d i r e c t - 2 4 S / * t e l l s m k g e t u r l t o r e d i r e c t * /

A d e l i n e MK__ M T H E J S E E P _ B 6 4 - 2 7 0 / * u s e d i n t e r n a l l y * /
d e f i n e HK__HIHE__NEEP__QP - 2 7 1 / * u s e d i n t e r n a l l y * /
^ d e f i n e HK*’ h i r e NE ED T E X T CONVERTE R - 2 7 2 / * u s e d I n t e r n a l l y * /

d e £ m e HK_" m i i i e j i e e p j ^ j t o n v e r t e r - 2 7 3 / * u s e d i n t e r n a l l y * /

d e f i n e HK.̂ T Q O J S ANY J 3 P E N _ F I D E S - 3 1 0

d e f i n e HK F I L E W RIT E ERROR - 3 5 0

Print Clone

Line, Colum n i 5 8 , 4 2

Figure C .l : Example o f a clone consisting entirely o f preprocessor directives. It is located in ilerror.h
and defines netlib error return codes to be used by Image Library. Its counterpart resides in merrors.h and
also defines netlib error return codes.

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^ d e f i n e ASSERTJRETURNjVOID|x) \
J S_B EGIN_HAC RO \

i f (! (x))
i

JS_ASSERT(0) ;

\
V

\
r e t u r n ; \

} \
1 JSJEND_HACRO

f d e f i n e ASSERT_RETGRN_VALUE(x,v) \
JS_BEGIN_HACRO \

i f (! (x)) \
< \

JS_ASSERT(0) ; \
r e t u r n v ; \

} \
| JS_ENDJHACRO

^ d e f i n e CHECK_RETURN_VOID(x) \
JS BEGIN HACRO \

i f i ! (x)) \
< \

r e t u r n ; \
) \

IJS_£ND_HACRO

1 f l d e f i n e CHECK RETURN VALUE(x,v) \■1 . _ —
SLU____________________________ _________ 1

Figure c.2: Example o f an exact clone. This clone corresponds to 70 duplicated lines dedicated to
declaration o f 9 macros. The counterpart o f this clone resides in a different directory.

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

v o i d Timer Imp1 : : F i r e T i m e o u t ()
{

i f (mFunc != NULL) {
(* m F u n c) { t h i s , m C lo su re) ;

}
e l s e i f (mCallback != NULL) {

m C a l l b a c k - > M o t i f y (t h i s) ; / / F i r e t h e t i m e r
>

/ / Always r e p e a t i n g h ere

/ / i f (mRepeat)
/ / mTimerld = g t k t i m e o u t a d d (a D e l a y , n sTim erE xpired ,

T i m e r l m p l : : T im erIm plJ)

> ;

v o i d T i m e r l m p l : : F i r e T i m e o u t ()
{

i f (mFunc != NULL) {
(* r o F u n c) (th i s , m C lo su re) ;

}
e l s e i f (mCallback != NULL) {

m C a l l b a c k - > N o t i f y (t h i s) ; / / F i r e t h e t i m e r
}

i / Always r e p e a t i n g h e re

/ / i f (mRepeat)
/ / mTimerld = XtAppAddTimeOut (gAppContext , G e t D e l a y Q ,
/

Timer Imp1 : : TimerImp1()
I

Figure c.3: An example o f two near clones typical to ‘parsdl’. The only difference between these two
code fragments is the line that is actually commented out (underlined).

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

static jobject
getScriptHook(JNIEnv *env, JSDJContext* jsdjc)

j c l a s s c l a z z ;
j f i e l d I D f i d ;

c l a z z = (* e n v) - > G e t O b j e c t C l a s s (e n v , j s d j c - > e o n t r o l l e r) ;
ASSERT_RETURN_VALUE(clazz, NULL);
f i d = (* e n v) - > G e t F i e l d I D (e n v , c l a z z , " s c r i p t H o o k ” ,

" L n e t s c a p e / j s d e b u g / S c r i p t H o o k ; ") ;
ASSERT_RETURN_VALUE(fid, NOLL);
r e t u r n (* e n v) - > G e t O b j e c t F i e l d (e n v , j s d j c - > c o n t r o l l e r , f i d) ;

>

s t a t i c j o b j e c t
g e t l n t e r r u p t H o o k (JNIEnv ’ e n v , J S D J C o n te x t * j s d j c)

<
j c l a 3 3 c l a j z ;
j f i e l d I D f i d ;

cXazz = (’ e n v) - > G e t O b j e c t C l a s a (e n v , j s d j c - > c o n t r o l l e r r) ;
ASSERT_RETtTRN_VALUEjciazz, NULL);
f i d = (* e n v) - > G e t F i e l d I D (e n v , c l a z z , " i n t e r r u p t H o o k ” ,

" L n e t s c a p e / j s d e b u g / I n t e r r u p t H o o k ; ") ;
ASSERT_RETURN_VALUE(fid, NULL);
r e t u r n (* e n v) - > G e t O b j e c t F i e l d (e n v , j s d j c - > c o n t r o l l e r , f i d) ;

}

F igure C.4: An example o f a near clone. The counterpart o f this clone is presented in Figure C.5. The
differences between these two code fragments are underlined.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

static jobject
getErrorReporter(JNIEnv *env, JSDJContext* jsdjc)

{
j c l a s s c l a z z ;
j f i e l d I D f i d ;

c l a z z = (* e n v) - > G e t O b j e c t C l a s s (e n v , j s d j c - > c o n t r o l l e r) ;
ASSERT_RETURN_VALUE(clazz, NULL);
f i d = (* e n v) - > G e t F i e l d I B (e n v , c l a z z , " e r r o r R e p o r t e r " ,

" L n e t s c a p e / j s d e b u g / J S E r r o r R e p o r t e r ; ”) ;
ASSERT J1ETURN_VALUE(fid, NULL);
r e t u r n (* e n v) - > G e t O b j e c t F i e l d (e n v , j s d j c - > c o n t r o l l e r , f i d) ;

}

s t a t i c j o b j e c t
g e t S c r i p t T s b l e (J N I E n v *env , J S D J C o n t e x t * j s d j c)

{
j c l a s s c l a z z ;
j f i e l d I D f i d ;

c l a z z = (* e n v) - > G e t G b j e e t C l a s s (e n v , j s d j c - > c o n t r o l l e r) ;
ASSERT_RETURN_VALUE(clazz, NULL);
f i d = (* e n v) - > G e t F i e l d I D (e n v , c l a z z , " s c r i p t T a b l e ” ,

"Lne t. s c a p e / u t i l / H a s h t a b l e ; ") ;
ASSERT_RETURN_VALUE (f i d , NULL)|;
r e t u r n (* e n v) - > G e t O b j e c t F i e l d (e n v , j s d j c - > c o n t r o l l e r , f i d) ;

}
±1___ I

Figure c.5: Counterpart o f the clone from Figure C.4. Both clones reside in the same file.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

N S J M E T H O D
G e tC e r tD a ta (c o n s t u ns igned c h a r ***certChain, PR U in t32 **cer tC hainLengths, PRUin t32 *noOfCerts);

/* *

* R e tu rn s the public key of the certi ficate.

* @ p a r a m publicKey - th e Public Key d a ta will be re tu rned in this field.
* @ p a r a m publicKeySize - the length of public key d a ta is re tu rned in this

p a ram e te r .
*/

N S J M E T H O D
G etPublicK ey(unsigned c h a r "pub l icK ey , PRU in t32 ’publ icKeySize);

/"
* R e tu rn s the c o m p a n y n a m e of the ceritificate (OU e tc p a r a m e te r s of certificate)

* @ p a r a m result - the cer tif icate de ta il s ab o u t the signer .
*/

N S J M E T H O D
G e tC o m p a n y N a m e (c o n s t c h a r " p p C o m p a n y N a m e) ;

/* *

* R e tu rn s the cer tif icate i s su e r ' s da ta (OU e tc p a r a m e t e r s of certif icate)

* @ p a r a m result - the deta il s a b o u t the i s su e r
*/

N S J M E T H O D
GetCert if icateAuthority(const c h a r "ppCer tAuthori ty) ;

/ * *

* R e tu rn s the ser ial n u m b e r of cert ificate

* @ p a r a m result - R e tu rn s the ser ial n u m b e r of certi ficate
7

N S J M E T H O D
G e tS e r ia lN u m b er(c o n s t c h a r " p p S e r ia lN u m b e r) ;

/**

* R e tu rn s the expiration d a t e of cert ificate

* @ p a r a m result - R e tu rn s th e expiration d a te of certificate
* /

N S J M E T H O D
G e tE xpira t ionD ate (const c h a r " p p E x p D a te) ;

/* *

* R e tu rn s the finger print of cert ificate

* @ p a r a m result - R e tu rn s the finger print of certif icate
*/

N S J M E T H O D
G e tF ingerPr in t(cons t c h a r "ppF in g e rP r in t) ;

Figure c.6: An example o f exact clone reported in ‘original’ and ‘parsedl’, but missed in ‘parsed2’.
Figure C.7 shows this block o f code in tokenized form as presented to SelArt.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ll(constunsignedchar***l, 1**1,1*1);
ll(unsignedchar**l,l*l);
ll(constchar**l);
ll(constchar**l);
ll(constchar**l);
ll(constchar**l);
ll(constchar**l);

Figure c.7: Same code fragment (Figure C.6) after pre-processing (tokenized). Note: lines 3 through 7
contain periodic repetition o f <II(constchar**I);> substring. SelArt reports 5 short matches o f this
substring instead o f a proper long match containing entire string. Vertical bars on the right hand side in
Figure C.6 delimit these detected (near) matches. Depending on the noise threshold value, these matches
may be filtered out from the final result set.

/ / h e l p e r f u n c t i o n |
s t a t i c j o b j e c t
_ g e t O b j e e t (J N I E n v *env , J S D J C o n te x t * j s d j c , c o n s t c h a r * o b j e c t _ n a m e ,

c o n s t c h a r *ob j e c t _ p a t . h)
f

j c l a s s c l a z z ;
j f i e l d I D f i d ;

c l a z z = (* e n v) ~ > G e t O b j e c t C l a s s (e n v , j s d j c - > c o n t r o l l e r) ;
ASSERT_RETURN_VALUE(clazz, NULL);
f i d = (*env) - > G e t F i e l d I D (env , c l a z z , object__nair ie, o b j e c t _ p a t h j ;

ASSERT_RETURN_VALUE(fid, NULL);
r e t u r n (* e n v) - > G e t O b j e c t F i e l d (e n v , j s d j c - > c o n t r o l l e r , f i d) ;

Figure C.8: Example o f restructuring. Step 1: extracting a helper function _getObject() from clones
shown in Figures C.4 and C.5.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

s t a t i c j o b j e c t
_ge t -Sc r ip tHook(JNIEnv *env, JSDJCon tex t* j s d j c)
7

r e t u r n _ g e t O b j e c t (e n v , j s d j c , " s c r i p t H o o k " , " L n e t s c a p e / j s d e b u g / S c r i p t H o o k ; ”) ;
>

s t a t i c j o b j e c t
_g e t I n t e r ru p t - H oo k (JNIEnv ’ env, JSDJCon tex t* j s d j c)
{

r e t u r n _ g e t O b j e c t (e n v , j s d j c , " i n t e r r u p t H o o k " , " L n e t s c a p e / j s d e b u g / I n t e r r u p t H o o k ; ")
}

s t a t i c j o b j e c t
_ g e t E r r o r R e p o r t e r (J N I E n v ’ env, JSDJContex t* j s d j c)
{

r e t u r n _ g e t O b j e c t (e n v , j s d j c , " e r r o r R e p o r t e r ",
" L n e t s c a p e / j s d e b u g / J S E r r o r R e p o r t e r ; ") ;

>

s t a t i c j o b j e c t
_ g e t 3 c r i p t T a b l e (J N I E n v *env, JSDJCon text* j s d j c)
{

r e t u r n __getObject (env, j s d j c , " s c r i p t T a b l e " , " L n e t s c a p e / u t i i / H a s h t a b i e , ■ ") ;
)

Figure c.9: Example o f restructuring. Step 2: Replacing clones with newly defined helper function.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix D - Support Tools Help

Step 1: Discovery of directory structure

Purpose: Recursively traverse the source code directory tree to:

1. Enumerate all C/C++ header/source files (i.e., .C, .c, .h, .cpp,

.cc, .cxx, . C + +) encountered in the system.

2. Delete any files other than these from the source code directory

tree.

Usage: grinder_clean and log <resu!tJile>

■ <result J ile > - name o f the file to store records about paths o f C/C++

header/source files encountered in the system.

Upon invocation, the user will be prompted for the location o f the source code tree to be

analyzed (INPUTjDIR). Upon completion, every file in 1NPUT_DIR will have a

corresponding entry in the result_file. Infonnation collected in the result J i le will be

used to drive steps 2a/b and 3.

Step 2a23: ‘Line-oriented’ to ‘stream ’ input conversion

Purpose: Converts original (i.e., line-oriented) source code into a stream form suitable

for exact clone identification with SelArt. This is achieved simply by discarding all new

line characters.

Usage: stripper <list>

23 Steps 2a and 2b are mutually exclusive. 2a precedes exact matching, whereas 2b precedes near
matching.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ <list> - name o f the file created in step 1 (i.e., <result J ile>) containing the list

o f files to be processed.

Upon invocation, the user will be prompted for the following input:

■ INPUTJDIR - absolute/relative path to a source code tree containing actual files

to be processed (i.e., INPUTJDIR from step 1).

■ OUTPUTJDIR - absolute/relative path to a directory for capturing output

(doesn’t have to exist). Contains “stripped” source to be used for clone

identification. File names/paths are derived from the original file names/paths by

appending the ‘.S ’ extension.

■ MAPPING JDIR - absolute/relative path to a directory for collecting supporting

statistics (doesn’t have to exist). File names/paths are derived from the original

file names/paths by appending the ‘.pos’ extension (section 4.3.3.3).

Step 2b: Pre-processing

Purpose: Converts original (i.e., line-oriented) source code into some intermediate

stream representation suitable for near clone identification with SelArt. This is achieved

via tokenizing on the lexical level and applying different transformation rules to the

tokens.

Usage: parser <buffer_size> <m axjoken_size> <list>

■ <buffer_size> - size o f input/output buffers to be allocated for the purposes o f

lexical analysis (recommended value: 1024).

■ <max_token_size> - max length o f a token lexeme to be remembered

(recommended value: 1024).

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ <list> - name o f the file created in step 1 enumerating files to be processed.

Upon invocation, the user will be prompted for the following information:

■ INPUT JDIR - absolute/relative path to a source code tree containing files to be

pre-processed (i.e., INPUT_DIR from step 1).

■ OUTPUT JDIR - absolute/relative path to a directory for capturing output

(doesn’t have to exist). Contains pre-processed source to be used for clone

identification. File names/paths are derived from the original file names/paths by

appending the ‘.U ’ extension.

■ MAPPING JDIR - absolute/relative path to a directory for collecting supporting

statistics (doesn’t have to exist). File names/paths are derived from the original

file names/paths by appending the ‘.pos’ extension (section 4.3.3.3).

■ ‘Nesting Switch ’ (YES/NO) - allows to control ‘nesting o f #ifO .. .#endifi feature

(recommended value: YES).

■ ‘Transformation Rules Switch ’-a llo w s to control transformation rules. NOTE:

Some transformation rules are enabled unconditionally, others need to be turned

ON/OFF explicitly.

During operation o f step 2a/b, the values o f such statistics as the average number o f

characters per line (ANCPL) and compression rate (CR) are calculated. They are printed

to the standard out upon tennination and will be used in step 3.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step 3: Clone identification with SelArt

Purpose: ‘Exact’ or ‘exact’-plus-‘near’ clone detection.

Usage: clones <-m###> <-/###> <-c###> <target_directory_path>

■ <target_directojy_path> - an absolute path to a directory to be analyzed (i.e.,

OUTPUT_DIR from step 2a/b).

■ <_/> . a minimum target clone size expressed via number o f lines. All clones o f

size / and greater are guaranteed to be found.

■ <-M> - a minimum target clone size expressed via number o f characters

calculated based on / using formula 4.3 and values o f ANCPL and CR from step

2a/b.

■ <-m> - m always equals M.

• <-c> - c always equals M.

SelArt requires a lot o f disk space to run. Otherwise, some bizarre failures could occur.

While running, SelArt creates and deletes a number o f intermediate files in the current

working directory. It also maintains a log file that can be used to monitor the progress

(i.e., tail - f log). Out o f all files left in the working directory after SelArt terminates,

only one, grpl.l, is useful as it contains clone information; the rest may be deleted.

Step 4: P o s tp ro c e ss in g

Purpose: Parse results o f clone identification (i.e., grpl.l file from step 3) to:

1. Extract information about clones with sizes exceeding some

threshold.

2. Convert clones’ boundaries into meaningful representation.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Usage: grpll_cnmcher

Upon invocation, the user will be prompted for the following information:

■ ‘grp l.lfile ’ - a path to a grpl.l file (i.e., from step 3) to be processed.

■ OUTPUT_DIR - a path to a directory that has been subjected to clone

identification (i.e., ‘ target_directory_path ’ o f step 3).

■ MAPPINGJDIR - a path to a directory containing supporting statistics (i.e.,

MAPPING_DIR from step 2a/b).

■ size jh resh o ld (in number o f lines) - specifies clone size threshold. Only

information about clones with sizes greater than this threshold is retained.

■ output Jile_nam e - name o f the file to capture the output o f this post-processing

(recommended value: ‘clones.fin’). This file will be used in CloneMaster data

base population (section 5.4.2).

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Candidate’s Full Name:

Place and data o f birth:

Permanent Address:

Universities attended:

Irina Padioukova

Moscow, Russia
April 13, 1968

172-2 Princess street
Saint John, NB
E2L 1K9, Canada

Moscow State Institute o f Steel and Alloys
(Technical University)
September 1985 - February 1991
Diploma Metallurgical Engineering

University o f New Brunswick
Fredericton, New Brunswick
September 1996 - January 2003
Candidate for MCS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

